// This is a port of the NIST P256 s390x asm implementation to SM2 P256. // // Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build !purego #include "textflag.h" #include "go_asm.h" DATA p256ordK0<>+0x00(SB)/4, $0x72350975 DATA p256ord<>+0x00(SB)/8, $0xfffffffeffffffff DATA p256ord<>+0x08(SB)/8, $0xffffffffffffffff DATA p256ord<>+0x10(SB)/8, $0x7203df6b21c6052b DATA p256ord<>+0x18(SB)/8, $0x53bbf40939d54123 DATA p256<>+0x00(SB)/8, $0xfffffffeffffffff // P256 DATA p256<>+0x08(SB)/8, $0xffffffffffffffff // P256 DATA p256<>+0x10(SB)/8, $0xffffffff00000000 // P256 DATA p256<>+0x18(SB)/8, $0xffffffffffffffff // P256 DATA p256<>+0x20(SB)/8, $0x0000000000000000 // SEL 0 0 d1 d0 DATA p256<>+0x28(SB)/8, $0x18191a1b1c1d1e1f // SEL 0 0 d1 d0 DATA p256<>+0x30(SB)/8, $0x0706050403020100 // LE2BE permute mask DATA p256<>+0x38(SB)/8, $0x0f0e0d0c0b0a0908 // LE2BE permute mask DATA p256mul<>+0x00(SB)/8, $0xfffffffeffffffff // P256 DATA p256mul<>+0x08(SB)/8, $0xffffffffffffffff // P256 DATA p256mul<>+0x10(SB)/8, $0xffffffff00000000 // P256 DATA p256mul<>+0x18(SB)/8, $0xffffffffffffffff // P256 DATA p256mul<>+0x20(SB)/8, $0x1c1d1e1f00000000 // SEL d0 0 0 d0 DATA p256mul<>+0x28(SB)/8, $0x000000001c1d1e1f // SEL d0 0 0 d0 DATA p256mul<>+0x30(SB)/8, $0x0405060708090a0b // SEL 0 0 d1 d0 DATA p256mul<>+0x38(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL 0 0 d1 d0 DATA p256mul<>+0x40(SB)/8, $0x0000000100000000 // (1*2^256)%P256 DATA p256mul<>+0x48(SB)/8, $0x0000000000000000 // (1*2^256)%P256 DATA p256mul<>+0x50(SB)/8, $0x00000000ffffffff // (1*2^256)%P256 DATA p256mul<>+0x58(SB)/8, $0x0000000000000001 // (1*2^256)%P256 GLOBL p256ordK0<>(SB), 8, $4 GLOBL p256ord<>(SB), 8, $32 GLOBL p256<>(SB), 8, $64 GLOBL p256mul<>(SB), 8, $96 // func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement) TEXT ·p256OrdLittleToBig(SB), NOSPLIT, $0 JMP ·p256BigToLittle(SB) // func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte) TEXT ·p256OrdBigToLittle(SB), NOSPLIT, $0 JMP ·p256BigToLittle(SB) // --------------------------------------- // func p256LittleToBig(res *[32]byte, in *p256Element) TEXT ·p256LittleToBig(SB), NOSPLIT, $0 JMP ·p256BigToLittle(SB) // func p256BigToLittle(res *p256Element, in *[32]byte) #define res_ptr R1 #define in_ptr R2 #define T1L V2 #define T1H V3 TEXT ·p256BigToLittle(SB), NOSPLIT, $0 MOVD res+0(FP), res_ptr MOVD in+8(FP), in_ptr VL 0(in_ptr), T1H VL 16(in_ptr), T1L VPDI $0x4, T1L, T1L, T1L VPDI $0x4, T1H, T1H, T1H VSTM T1L, T1H, (res_ptr) RET #undef res_ptr #undef in_ptr #undef T1L #undef T1H // --------------------------------------- // iff cond == 1 val <- -val // func p256NegCond(val *p256Element, cond int) #define P1ptr R1 #define CPOOL R4 #define Y1L V0 #define Y1H V1 #define T1L V2 #define T1H V3 #define PL V31 #define PH V30 #define ZER V4 #define SEL1 V5 #define CAR1 V6 TEXT ·p256NegCond(SB), NOSPLIT, $0 MOVD val+0(FP), P1ptr MOVD $p256mul<>+0x00(SB), CPOOL VLM (CPOOL), PH, PL VL 16(P1ptr), Y1H VPDI $0x4, Y1H, Y1H, Y1H VL 0(P1ptr), Y1L VPDI $0x4, Y1L, Y1L, Y1L VLREPG cond+8(FP), SEL1 VZERO ZER VCEQG SEL1, ZER, SEL1 VSCBIQ Y1L, PL, CAR1 VSQ Y1L, PL, T1L VSBIQ PH, Y1H, CAR1, T1H VSEL Y1L, T1L, SEL1, Y1L VSEL Y1H, T1H, SEL1, Y1H VPDI $0x4, Y1H, Y1H, Y1H VST Y1H, 16(P1ptr) VPDI $0x4, Y1L, Y1L, Y1L VST Y1L, 0(P1ptr) RET #undef P1ptr #undef CPOOL #undef Y1L #undef Y1H #undef T1L #undef T1H #undef PL #undef PH #undef ZER #undef SEL1 #undef CAR1 // --------------------------------------- // if cond == 0 res <- b; else res <- a // func p256MovCond(res, a, b *P256Point, cond int) #define P3ptr R1 #define P1ptr R2 #define P2ptr R3 #define X1L V1 #define X1H V0 #define Y1L V3 #define Y1H V2 #define Z1L V5 #define Z1H V4 #define X2L V7 #define X2H V6 #define Y2L V9 #define Y2H V8 #define Z2L V11 #define Z2H V10 #define ZER V18 #define SEL1 V19 TEXT ·p256MovCond(SB), NOSPLIT, $0 MOVD res+0(FP), P3ptr MOVD a+8(FP), P1ptr MOVD b+16(FP), P2ptr VLREPG cond+24(FP), SEL1 VZERO ZER VCEQG SEL1, ZER, SEL1 VLM (P1ptr), X1H, Z1L VLM (P2ptr), X2H, Z2L VSEL X2L, X1L, SEL1, X1L VSEL X2H, X1H, SEL1, X1H VSEL Y2L, Y1L, SEL1, Y1L VSEL Y2H, Y1H, SEL1, Y1H VSEL Z2L, Z1L, SEL1, Z1L VSEL Z2H, Z1H, SEL1, Z1H VSTM X1H, Z1L, (P3ptr) RET #undef P3ptr #undef P1ptr #undef P2ptr #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef ZER #undef SEL1 // --------------------------------------- // Constant time table access // Indexed from 1 to 15, with -1 offset // (index 0 is implicitly point at infinity) // func p256Select(res *P256Point, table *p256Table, idx int, limit int) #define P3ptr R1 #define P1ptr R2 #define LIMIT R3 #define COUNT R4 #define X1L V1 #define X1H V0 #define Y1L V3 #define Y1H V2 #define Z1L V5 #define Z1H V4 #define X2L V7 #define X2H V6 #define Y2L V9 #define Y2H V8 #define Z2L V11 #define Z2H V10 #define ONE V18 #define IDX V19 #define SEL1 V20 #define SEL2 V21 TEXT ·p256Select(SB), NOSPLIT, $0 MOVD res+0(FP), P3ptr MOVD table+8(FP), P1ptr MOVD limit+24(FP), LIMIT VLREPB idx+(16+7)(FP), IDX VREPIB $1, ONE VREPIB $1, SEL2 MOVD $1, COUNT VZERO X1H VZERO X1L VZERO Y1H VZERO Y1L VZERO Z1H VZERO Z1L loop_select: VLM (P1ptr), X2H, Z2L VCEQG SEL2, IDX, SEL1 VSEL X2L, X1L, SEL1, X1L VSEL X2H, X1H, SEL1, X1H VSEL Y2L, Y1L, SEL1, Y1L VSEL Y2H, Y1H, SEL1, Y1H VSEL Z2L, Z1L, SEL1, Z1L VSEL Z2H, Z1H, SEL1, Z1H VAB SEL2, ONE, SEL2 ADD $96, P1ptr ADD $1, COUNT CMPBLE COUNT, LIMIT, loop_select VSTM X1H, Z1L, (P3ptr) RET #undef P3ptr #undef P1ptr #undef COUNT #undef LIMIT #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef ONE #undef IDX #undef SEL1 #undef SEL2 // --------------------------------------- // func p256FromMont(res, in *p256Element) #define res_ptr R1 #define x_ptr R2 #define CPOOL R4 #define T0 V0 #define T1 V1 #define T2 V2 #define TT0 V3 #define TT1 V4 #define ZER V6 #define CAR1 V9 #define CAR2 V10 #define RED1 V11 #define RED2 V12 #define PH V13 #define PL V14 #define SEL1 V15 TEXT ·p256FromMont(SB), NOSPLIT, $0 MOVD res+0(FP), res_ptr MOVD in+8(FP), x_ptr VZERO T2 VZERO ZER MOVD $p256<>+0x00(SB), CPOOL VLM (CPOOL), PH, SEL1 VLM (x_ptr), T0, T1 VPDI $0x4, T0, T0, T0 VPDI $0x4, T1, T1, T1 // First round VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0 VSLDB $4, RED1, ZER, TT0 // 0 d1 d0 0 VSLDB $4, TT0, ZER, RED2 // d1 d0 0 0 VSCBIQ TT0, RED1, CAR1 VSQ TT0, RED1, RED1 VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow VSLDB $8, T1, T0, T0 VSLDB $8, T2, T1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // Second round VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0 VSLDB $4, RED1, ZER, TT0 // 0 d1 d0 0 VSLDB $4, TT0, ZER, RED2 // d1 d0 0 0 VSCBIQ TT0, RED1, CAR1 VSQ TT0, RED1, RED1 VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow VSLDB $8, T1, T0, T0 VSLDB $8, T2, T1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // Third round VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0 VSLDB $4, RED1, ZER, TT0 // 0 d1 d0 0 VSLDB $4, TT0, ZER, RED2 // d1 d0 0 0 VSCBIQ TT0, RED1, CAR1 VSQ TT0, RED1, RED1 VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow VSLDB $8, T1, T0, T0 VSLDB $8, T2, T1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // Last round VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0 VSLDB $4, RED1, ZER, TT0 // 0 d1 d0 0 VSLDB $4, TT0, ZER, RED2 // d1 d0 0 0 VSCBIQ TT0, RED1, CAR1 VSQ TT0, RED1, RED1 VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow VSLDB $8, T1, T0, T0 VSLDB $8, T2, T1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // --------------------------------------------------- VSCBIQ PL, T0, CAR1 VSQ PL, T0, TT0 VSBCBIQ T1, PH, CAR1, CAR2 VSBIQ T1, PH, CAR1, TT1 VSBIQ T2, ZER, CAR2, T2 // what output to use, TT1||TT0 or T1||T0? VSEL T0, TT0, T2, T0 VSEL T1, TT1, T2, T1 VPDI $0x4, T0, T0, TT0 VPDI $0x4, T1, T1, TT1 VSTM TT0, TT1, (res_ptr) RET #undef res_ptr #undef x_ptr #undef CPOOL #undef T0 #undef T1 #undef T2 #undef TT0 #undef TT1 #undef ZER #undef SEL1 #undef CAR1 #undef CAR2 #undef RED1 #undef RED2 #undef PL #undef PH // Constant time table access // Indexed from 1 to 15, with -1 offset // (index 0 is implicitly point at infinity) // func p256SelectBase(point *p256Point, table []p256Point, idx int) // new : func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int) #define P3ptr R1 #define P1ptr R2 #define COUNT R4 #define CPOOL R5 #define X1L V1 #define X1H V0 #define Y1L V3 #define Y1H V2 #define X2L V7 #define X2H V6 #define Y2L V9 #define Y2H V8 #define ONE V18 #define IDX V19 #define SEL1 V20 #define SEL2 V21 TEXT ·p256SelectAffine(SB), NOSPLIT, $0 MOVD res+0(FP), P3ptr MOVD table+8(FP), P1ptr MOVD $p256<>+0x00(SB), CPOOL VLREPB idx+(16+7)(FP), IDX VREPIB $1, ONE VREPIB $1, SEL2 MOVD $1, COUNT VZERO X1H VZERO X1L VZERO Y1H VZERO Y1L loop_select: VLM (P1ptr), X2H, Y2L VCEQG SEL2, IDX, SEL1 VSEL X2L, X1L, SEL1, X1L VSEL X2H, X1H, SEL1, X1H VSEL Y2L, Y1L, SEL1, Y1L VSEL Y2H, Y1H, SEL1, Y1H VAB SEL2, ONE, SEL2 ADDW $1, COUNT ADD $64, P1ptr CMPW COUNT, $33 BLT loop_select VSTM X1H, Y1L, (P3ptr) RET #undef P3ptr #undef P1ptr #undef COUNT #undef X1L #undef X1H #undef Y1L #undef Y1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef ONE #undef IDX #undef SEL1 #undef SEL2 #undef CPOOL // --------------------------------------- // sm2p256OrdMulInternal #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define M1 V4 #define M0 V5 #define T0 V6 #define T1 V7 #define T2 V8 #define YDIG V9 #define ADD1 V16 #define ADD1H V17 #define ADD2 V18 #define ADD2H V19 #define RED1 V20 #define RED1H V21 #define RED2 V22 #define RED2H V23 #define CAR1 V24 #define CAR1M V25 #define MK0 V30 #define K0 V31 TEXT sm2p256OrdMulInternal<>(SB), NOSPLIT, $0-0 // ---------------------------------------------------------------------------/ VREPF $3, Y0, YDIG VMLF X0, YDIG, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMLF X1, YDIG, ADD2 VMLHF X0, YDIG, ADD1H VMLHF X1, YDIG, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VZERO T2 VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- /* * * ---+--------+--------+ * T2| T1 | T0 | * ---+--------+--------+ * *(add)* * +--------+--------+ * | X1 | X0 | * +--------+--------+ * *(mul)* * +--------+--------+ * | YDIG | YDIG | * +--------+--------+ * *(add)* * +--------+--------+ * | M1 | M0 | * +--------+--------+ * *(mul)* * +--------+--------+ * | MK0 | MK0 | * +--------+--------+ * * --------------------- * * +--------+--------+ * | ADD2 | ADD1 | * +--------+--------+ * +--------+--------+ * | ADD2H | ADD1H | * +--------+--------+ * +--------+--------+ * | RED2 | RED1 | * +--------+--------+ * +--------+--------+ * | RED2H | RED1H | * +--------+--------+ */ VREPF $2, Y0, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $1, Y0, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $0, Y0, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $3, Y1, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $2, Y1, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $1, Y1, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VREPF $0, Y1, YDIG VMALF X0, YDIG, T0, ADD1 VMLF ADD1, K0, MK0 VREPF $3, MK0, MK0 VMALF X1, YDIG, T1, ADD2 VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF M0, MK0, ADD1, RED1 VMALHF M0, MK0, ADD1, RED1H VMALF M1, MK0, ADD2, RED2 VMALHF M1, MK0, ADD2, RED2H VSLDB $12, RED2, RED1, RED1 VSLDB $12, T2, RED2, RED2 VACCQ RED1, ADD1H, CAR1 VAQ RED1, ADD1H, T0 VACCQ RED1H, T0, CAR1M VAQ RED1H, T0, T0 // << ready for next MK0 VACQ RED2, ADD2H, CAR1, T1 VACCCQ RED2, ADD2H, CAR1, CAR1 VACCCQ RED2H, T1, CAR1M, T2 VACQ RED2H, T1, CAR1M, T1 VAQ CAR1, T2, T2 // --------------------------------------------------- VZERO RED1 VSCBIQ M0, T0, CAR1 VSQ M0, T0, ADD1 VSBCBIQ T1, M1, CAR1, CAR1M VSBIQ T1, M1, CAR1, ADD2 VSBIQ T2, RED1, CAR1M, T2 // what output to use, ADD2||ADD1 or T1||T0? VSEL T0, ADD1, T2, T0 VSEL T1, ADD2, T2, T1 RET #undef X0 #undef X1 #undef Y0 #undef Y1 #undef M0 #undef M1 #undef T0 #undef T1 #undef T2 #undef YDIG #undef ADD1 #undef ADD1H #undef ADD2 #undef ADD2H #undef RED1 #undef RED1H #undef RED2 #undef RED2H #undef CAR1 #undef CAR1M #undef MK0 #undef K0 // --------------------------------------- // Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 TEXT sm2p256OrdSqrInternal<>(SB), NOFRAME|NOSPLIT, $0 VLR X0, Y0 VLR X1, Y1 BR sm2p256OrdMulInternal<>(SB) #undef X0 #undef X1 #undef Y0 #undef Y1 // --------------------------------------- // func p256OrdMul(res, in1, in2 *p256OrdElement) #define res_ptr R1 #define x_ptr R2 #define y_ptr R3 #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define M0 V5 #define M1 V4 #define T0 V6 #define T1 V7 #define K0 V31 TEXT ·p256OrdMul(SB), NOSPLIT, $0 MOVD res+0(FP), res_ptr MOVD in1+8(FP), x_ptr MOVD in2+16(FP), y_ptr MOVD $p256ordK0<>+0x00(SB), R4 VLEF $3, 0(R4), K0 //WORD $0xE7F40000 //BYTE $0x38 //BYTE $0x03 MOVD $p256ord<>+0x00(SB), R4 VLM (R4), M1, M0 VLM (x_ptr), X0, X1 VPDI $0x4, X0, X0, X0 VPDI $0x4, X1, X1, X1 VLM (y_ptr), Y0, Y1 VPDI $0x4, Y0, Y0, Y0 VPDI $0x4, Y1, Y1, Y1 CALL sm2p256OrdMulInternal<>(SB) VPDI $0x4, T0, T0, T0 VPDI $0x4, T1, T1, T1 VSTM T0, T1, (res_ptr) RET #undef res_ptr #undef x_ptr #undef y_ptr #undef X0 #undef X1 #undef Y0 #undef Y1 #undef M0 #undef M1 #undef T0 #undef T1 #undef K0 // --------------------------------------- // func p256OrdSqr(res, in *p256OrdElement, n int) #define res_ptr R1 #define x_ptr R2 #define COUNT R5 #define N R6 #define X0 V0 #define X1 V1 #define M0 V5 #define M1 V4 #define T0 V6 #define T1 V7 #define K0 V31 TEXT ·p256OrdSqr(SB), NOSPLIT, $0 MOVD res+0(FP), res_ptr MOVD in+8(FP), x_ptr MOVD n+16(FP), N MOVD $0, COUNT MOVD $p256ordK0<>+0x00(SB), R4 VLEF $3, 0(R4), K0 //WORD $0xE7F40000 //BYTE $0x38 //BYTE $0x03 MOVD $p256ord<>+0x00(SB), R4 VLM (R4), M1, M0 VLM (x_ptr), X0, X1 VPDI $0x4, X0, X0, X0 VPDI $0x4, X1, X1, X1 loop: CALL sm2p256OrdSqrInternal<>(SB) VLR T0, X0 VLR T1, X1 ADDW $1, COUNT CMPW COUNT, N BLT loop VPDI $0x4, T0, T0, T0 VPDI $0x4, T1, T1, T1 VSTM T0, T1, (res_ptr) RET #undef res_ptr #undef x_ptr #undef COUNT #undef N #undef X0 #undef X1 #undef M0 #undef M1 #undef T0 #undef T1 #undef K0 // --------------------------------------- // sm2p256MulInternal // V0-V3,V30,V31 - Not Modified // V4-V15 - Volatile #define CPOOL R4 // Parameters #define X0 V0 // Not modified #define X1 V1 // Not modified #define Y0 V2 // Not modified #define Y1 V3 // Not modified #define T0 V4 #define T1 V5 #define P0 V31 // Not modified #define P1 V30 // Not modified // Temporaries #define YDIG V6 // Overloaded with CAR2, ZER #define ADD1H V7 // Overloaded with ADD3H #define ADD2H V8 // Overloaded with ADD4H #define ADD3 V9 // Overloaded with SEL2,SEL5 #define ADD4 V10 // Overloaded with SEL3,SEL6 #define RED1 V11 // Overloaded with CAR2 #define RED2 V12 #define RED3 V13 // Overloaded with SEL1 #define T2 V14 // Overloaded temporaries #define ADD1 V4 // Overloaded with T0 #define ADD2 V5 // Overloaded with T1 #define ADD3H V7 // Overloaded with ADD1H #define ADD4H V8 // Overloaded with ADD2H #define ZER V6 // Overloaded with YDIG, CAR2 #define CAR1 V6 // Overloaded with YDIG, ZER #define CAR2 V11 // Overloaded with RED1 // Constant Selects #define SEL1 V13 // Overloaded with RED3 #define SEL2 V9 // Overloaded with ADD3,SEL5 #define SEL3 V10 // Overloaded with ADD4,SEL6 #define SEL4 V6 // Overloaded with YDIG,CAR2,ZER #define SEL5 V9 // Overloaded with ADD3,SEL2 #define SEL6 V10 // Overloaded with ADD4,SEL3 TEXT sm2p256MulInternal<>(SB), NOSPLIT, $0-0 // --------------------------------------------------- VREPF $3, Y0, YDIG VMLHF X0, YDIG, ADD1H VMLHF X1, YDIG, ADD2H VMLF X0, YDIG, ADD1 VMLF X1, YDIG, ADD2 VREPF $2, Y0, YDIG VMALF X0, YDIG, ADD1H, ADD3 VMALF X1, YDIG, ADD2H, ADD4 VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free VZERO ZER VL 32(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDB $12, ADD2, ADD1, T0 // ADD1 Free VSLDB $12, ZER, ADD2, T1 // ADD2 Free VACCQ T0, ADD3, CAR1 VAQ T0, ADD3, T0 // ADD3 Free VACCCQ T1, ADD4, CAR1, T2 VACQ T1, ADD4, CAR1, T1 // ADD4 Free VL 48(CPOOL), SEL2 VPERM RED3, T0, SEL2, RED1 // [ 0 0 d1 d0] VSLDB $4, RED1, ZER, RED3 // [ 0 d1 d0 0] VSLDB $4, RED3, ZER, RED2 // [d1 d0 0 0] VSCBIQ RED3, RED1, CAR1 VSQ RED3, RED1, RED1 VSBIQ RED2, RED3, CAR1, RED2 // Guaranteed not to underflow VSLDB $12, T1, T0, T0 VSLDB $12, T2, T1, T1 // T2 Free VACCQ T0, ADD3H, CAR1 VAQ T0, ADD3H, T0 VACCCQ T1, ADD4H, CAR1, T2 VACQ T1, ADD4H, CAR1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // --------------------------------------------------- VREPF $1, Y0, YDIG VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF X0, YDIG, T0, ADD1 // T0 Free->ADD1 VMALF X1, YDIG, T1, ADD2 // T1 Free->ADD2 VREPF $0, Y0, YDIG VMALF X0, YDIG, ADD1H, ADD3 VMALF X1, YDIG, ADD2H, ADD4 VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free->ADD3H VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free->ADD4H , YDIG Free->ZER VZERO ZER VL 32(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDB $12, ADD2, ADD1, T0 // ADD1 Free->T0 VSLDB $12, T2, ADD2, T1 // ADD2 Free->T1, T2 Free VACCQ T0, ADD3, CAR1 VAQ T0, ADD3, T0 VACCCQ T1, ADD4, CAR1, T2 VACQ T1, ADD4, CAR1, T1 VL 48(CPOOL), SEL2 VPERM RED3, T0, SEL2, RED1 // [ 0 0 d1 d0] VSLDB $4, RED1, ZER, RED3 // [ 0 d1 d0 0] VSLDB $4, RED3, ZER, RED2 // [d1 d0 0 0] VSCBIQ RED3, RED1, CAR1 VSQ RED3, RED1, RED1 VSBIQ RED2, RED3, CAR1, RED2 // Guaranteed not to underflow VSLDB $12, T1, T0, T0 VSLDB $12, T2, T1, T1 VACCQ T0, ADD3H, CAR1 VAQ T0, ADD3H, T0 VACCCQ T1, ADD4H, CAR1, T2 VACQ T1, ADD4H, CAR1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // --------------------------------------------------- VREPF $3, Y1, YDIG VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF X0, YDIG, T0, ADD1 VMALF X1, YDIG, T1, ADD2 VREPF $2, Y1, YDIG VMALF X0, YDIG, ADD1H, ADD3 VMALF X1, YDIG, ADD2H, ADD4 VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free VZERO ZER VL 32(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDB $12, ADD2, ADD1, T0 // ADD1 Free VSLDB $12, T2, ADD2, T1 // ADD2 Free->T1, T2 Free VACCQ T0, ADD3, CAR1 VAQ T0, ADD3, T0 VACCCQ T1, ADD4, CAR1, T2 VACQ T1, ADD4, CAR1, T1 VL 48(CPOOL), SEL2 VPERM RED3, T0, SEL2, RED1 // [ 0 0 d1 d0] VSLDB $4, RED1, ZER, RED3 // [ 0 d1 d0 0] VSLDB $4, RED3, ZER, RED2 // [d1 d0 0 0] VSCBIQ RED3, RED1, CAR1 VSQ RED3, RED1, RED1 VSBIQ RED2, RED3, CAR1, RED2 // Guaranteed not to underflow VSLDB $12, T1, T0, T0 VSLDB $12, T2, T1, T1 VACCQ T0, ADD3H, CAR1 VAQ T0, ADD3H, T0 VACCCQ T1, ADD4H, CAR1, T2 VACQ T1, ADD4H, CAR1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // --------------------------------------------------- VREPF $1, Y1, YDIG VMALHF X0, YDIG, T0, ADD1H VMALHF X1, YDIG, T1, ADD2H VMALF X0, YDIG, T0, ADD1 VMALF X1, YDIG, T1, ADD2 VREPF $0, Y1, YDIG VMALF X0, YDIG, ADD1H, ADD3 VMALF X1, YDIG, ADD2H, ADD4 VMALHF X0, YDIG, ADD1H, ADD3H VMALHF X1, YDIG, ADD2H, ADD4H VZERO ZER VL 32(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDB $12, ADD2, ADD1, T0 // ADD1 Free VSLDB $12, T2, ADD2, T1 // ADD2 Free->T1, T2 Free VACCQ T0, ADD3, CAR1 VAQ T0, ADD3, T0 VACCCQ T1, ADD4, CAR1, T2 VACQ T1, ADD4, CAR1, T1 VL 48(CPOOL), SEL2 VPERM RED3, T0, SEL2, RED1 // [ 0 0 d1 d0] VSLDB $4, RED1, ZER, RED3 // [ 0 d1 d0 0] VSLDB $4, RED3, ZER, RED2 // [d1 d0 0 0] VSCBIQ RED3, RED1, CAR1 VSQ RED3, RED1, RED1 VSBIQ RED2, RED3, CAR1, RED2 // Guaranteed not to underflow VSLDB $12, T1, T0, T0 VSLDB $12, T2, T1, T1 VACCQ T0, ADD3H, CAR1 VAQ T0, ADD3H, T0 VACCCQ T1, ADD4H, CAR1, T2 VACQ T1, ADD4H, CAR1, T1 VACCQ T0, RED1, CAR1 VAQ T0, RED1, T0 VACCCQ T1, RED2, CAR1, CAR2 VACQ T1, RED2, CAR1, T1 VAQ T2, CAR2, T2 // --------------------------------------------------- VZERO RED3 VSCBIQ P0, T0, CAR1 VSQ P0, T0, ADD1H VSBCBIQ T1, P1, CAR1, CAR2 VSBIQ T1, P1, CAR1, ADD2H VSBIQ T2, RED3, CAR2, T2 // what output to use, ADD2H||ADD1H or T1||T0? VSEL T0, ADD1H, T2, T0 VSEL T1, ADD2H, T2, T1 RET #undef CPOOL #undef X0 #undef X1 #undef Y0 #undef Y1 #undef T0 #undef T1 #undef P0 #undef P1 #undef SEL1 #undef SEL2 #undef SEL3 #undef SEL4 #undef SEL5 #undef SEL6 #undef YDIG #undef ADD1H #undef ADD2H #undef ADD3 #undef ADD4 #undef RED1 #undef RED2 #undef RED3 #undef T2 #undef ADD1 #undef ADD2 #undef ADD3H #undef ADD4H #undef ZER #undef CAR1 #undef CAR2 // --------------------------------------- // Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 TEXT sm2p256SqrInternal<>(SB), NOFRAME|NOSPLIT, $0 VLR X0, Y0 VLR X1, Y1 BR sm2p256MulInternal<>(SB) #undef X0 #undef X1 #undef Y0 #undef Y1 #define p256SubInternal(T1, T0, X1, X0, Y1, Y0) \ VZERO ZER \ VSCBIQ Y0, X0, CAR1 \ VSQ Y0, X0, T0 \ VSBCBIQ X1, Y1, CAR1, SEL1 \ VSBIQ X1, Y1, CAR1, T1 \ VSQ SEL1, ZER, SEL1 \ \ VACCQ T0, PL, CAR1 \ VAQ T0, PL, TT0 \ VACQ T1, PH, CAR1, TT1 \ \ VSEL T0, TT0, SEL1, T0 \ VSEL T1, TT1, SEL1, T1 \ #define p256AddInternal(T1, T0, X1, X0, Y1, Y0) \ VACCQ X0, Y0, CAR1 \ VAQ X0, Y0, T0 \ VACCCQ X1, Y1, CAR1, T2 \ VACQ X1, Y1, CAR1, T1 \ \ VZERO ZER \ VSCBIQ PL, T0, CAR1 \ VSQ PL, T0, TT0 \ VSBCBIQ T1, PH, CAR1, CAR2 \ VSBIQ T1, PH, CAR1, TT1 \ VSBIQ T2, ZER, CAR2, SEL1 \ \ VSEL T0, TT0, SEL1, T0 \ VSEL T1, TT1, SEL1, T1 #define p256HalfInternal(T1, T0, X1, X0) \ VZERO ZER \ VSBIQ ZER, ZER, X0, SEL1 \ \ VACCQ X0, PL, CAR1 \ VAQ X0, PL, T0 \ VACCCQ X1, PH, CAR1, T2 \ VACQ X1, PH, CAR1, T1 \ \ VSEL X0, T0, SEL1, T0 \ VSEL X1, T1, SEL1, T1 \ VSEL ZER, T2, SEL1, T2 \ \ VSLDB $15, T2, ZER, TT1 \ VSLDB $15, T1, ZER, TT0 \ VREPIB $1, SEL1 \ VSRL SEL1, T0, T0 \ VSRL SEL1, T1, T1 \ VREPIB $7, SEL1 \ VSL SEL1, TT0, TT0 \ VSL SEL1, TT1, TT1 \ VO T0, TT0, T0 \ VO T1, TT1, T1 // --------------------------------------- // func p256Mul(res, in1, in2 *p256Element) #define res_ptr R1 #define x_ptr R2 #define y_ptr R3 #define CPOOL R4 // Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define T0 V4 #define T1 V5 // Constants #define P0 V31 #define P1 V30 TEXT ·p256Mul(SB), NOSPLIT, $0 MOVD res+0(FP), res_ptr MOVD in1+8(FP), x_ptr MOVD in2+16(FP), y_ptr VLM (x_ptr), X0, X1 VPDI $0x4, X0, X0, X0 VPDI $0x4, X1, X1, X1 VLM (y_ptr), Y0, Y1 VPDI $0x4, Y0, Y0, Y0 VPDI $0x4, Y1, Y1, Y1 MOVD $p256mul<>+0x00(SB), CPOOL VLM (CPOOL), P1, P0 CALL sm2p256MulInternal<>(SB) VPDI $0x4, T0, T0, T0 VPDI $0x4, T1, T1, T1 VSTM T0, T1, (res_ptr) RET #undef res_ptr #undef x_ptr #undef y_ptr #undef CPOOL #undef X0 #undef X1 #undef Y0 #undef Y1 #undef T0 #undef T1 #undef P0 #undef P1 // --------------------------------------- // func p256Sqr(res, in *p256Element, n int) #define res_ptr R1 #define x_ptr R2 #define y_ptr R3 #define CPOOL R4 #define COUNT R5 #define N R6 // Parameters #define X0 V0 #define X1 V1 #define T0 V4 #define T1 V5 // Constants #define P0 V31 #define P1 V30 TEXT ·p256Sqr(SB), NOSPLIT, $0 MOVD res+0(FP), res_ptr MOVD in+8(FP), x_ptr VLM (x_ptr), X0, X1 VPDI $0x4, X0, X0, X0 VPDI $0x4, X1, X1, X1 MOVD $p256mul<>+0x00(SB), CPOOL MOVD $0, COUNT MOVD n+16(FP), N VLM (CPOOL), P1, P0 loop: CALL sm2p256SqrInternal<>(SB) VLR T0, X0 VLR T1, X1 ADDW $1, COUNT CMPW COUNT, N BLT loop VPDI $0x4, T0, T0, T0 VPDI $0x4, T1, T1, T1 VSTM T0, T1, (res_ptr) RET #undef res_ptr #undef x_ptr #undef y_ptr #undef CPOOL #undef COUNT #undef N #undef X0 #undef X1 #undef T0 #undef T1 #undef P0 #undef P1 // Point add with P2 being affine point // If sign == 1 -> P2 = -P2 // If sel == 0 -> P3 = P1 // if zero == 0 -> P3 = P2 // func p256PointAddAffineAsm(res, in1 *P256Point, in2 *p256AffinePoint, sign, sel, zero int) #define P3ptr R1 #define P1ptr R2 #define P2ptr R3 #define CPOOL R4 // Temporaries in REGs #define Y2L V15 #define Y2H V16 #define T1L V17 #define T1H V18 #define T2L V19 #define T2H V20 #define T3L V21 #define T3H V22 #define T4L V23 #define T4H V24 // Temps for Sub and Add #define TT0 V11 #define TT1 V12 #define T2 V13 // p256MulAsm Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define T0 V4 #define T1 V5 #define PL V31 #define PH V30 // Names for zero/sel selects #define X1L V0 #define X1H V1 #define Y1L V2 // p256MulAsmParmY #define Y1H V3 // p256MulAsmParmY #define Z1L V4 #define Z1H V5 #define X2L V0 #define X2H V1 #define Z2L V4 #define Z2H V5 #define X3L V17 // T1L #define X3H V18 // T1H #define Y3L V21 // T3L #define Y3H V22 // T3H #define Z3L V28 #define Z3H V29 #define ZER V6 #define SEL1 V7 #define CAR1 V8 #define CAR2 V9 /* * * Three operand formula: * Source: 2004 Hankerson–Menezes–Vanstone, page 91. * T1 = Z1² * T2 = T1*Z1 * T1 = T1*X2 * T2 = T2*Y2 * T1 = T1-X1 * T2 = T2-Y1 * Z3 = Z1*T1 * T3 = T1² * T4 = T3*T1 * T3 = T3*X1 * T1 = 2*T3 * X3 = T2² * X3 = X3-T1 * X3 = X3-T4 * T3 = T3-X3 * T3 = T3*T2 * T4 = T4*Y1 * Y3 = T3-T4 * Three operand formulas, but with MulInternal X,Y used to store temps X=Z1; Y=Z1; MUL;T- // T1 = Z1² T1 X=T ; Y- ; MUL;T2=T // T2 = T1*Z1 T1 T2 X- ; Y=X2; MUL;T1=T // T1 = T1*X2 T1 T2 X=T2; Y=Y2; MUL;T- // T2 = T2*Y2 T1 T2 SUB(T2+0x00(SB), CPOOL VL 16(CPOOL), PL VL 0(CPOOL), PH // if (sign == 1) { // Y2 = fromBig(new(big.Int).Mod(new(big.Int).Sub(p256.P, new(big.Int).SetBytes(Y2)), p256.P)) // Y2 = P-Y2 // } VL 48(P2ptr), Y2H VPDI $0x4, Y2H, Y2H, Y2H VL 32(P2ptr), Y2L VPDI $0x4, Y2L, Y2L, Y2L VLREPG sign+24(FP), SEL1 VZERO ZER VCEQG SEL1, ZER, SEL1 VSCBIQ Y2L, PL, CAR1 VSQ Y2L, PL, T1L VSBIQ PH, Y2H, CAR1, T1H VSEL Y2L, T1L, SEL1, Y2L VSEL Y2H, T1H, SEL1, Y2H /* * * Three operand formula: * Source: 2004 Hankerson–Menezes–Vanstone, page 91. */ // X=Z1; Y=Z1; MUL; T- // T1 = Z1² T1 VL 80(P1ptr), X1 // Z1H VPDI $0x4, X1, X1, X1 VL 64(P1ptr), X0 // Z1L VPDI $0x4, X0, X0, X0 VLR X0, Y0 VLR X1, Y1 CALL sm2p256SqrInternal<>(SB) // X=T ; Y- ; MUL; T2=T // T2 = T1*Z1 T1 T2 VLR T0, X0 VLR T1, X1 CALL sm2p256MulInternal<>(SB) VLR T0, T2L VLR T1, T2H // X- ; Y=X2; MUL; T1=T // T1 = T1*X2 T1 T2 VL 16(P2ptr), Y1 // X2H VPDI $0x4, Y1, Y1, Y1 VL 0(P2ptr), Y0 // X2L VPDI $0x4, Y0, Y0, Y0 CALL sm2p256MulInternal<>(SB) VLR T0, T1L VLR T1, T1H // X=T2; Y=Y2; MUL; T- // T2 = T2*Y2 T1 T2 VLR T2L, X0 VLR T2H, X1 VLR Y2L, Y0 VLR Y2H, Y1 CALL sm2p256MulInternal<>(SB) // SUB(T2(SB) // VST T1, 64(P3ptr) // VST T0, 80(P3ptr) VLR T0, Z3L VLR T1, Z3H // X=Y; Y- ; MUL; X=T // T3 = T1*T1 T2 VLR Y0, X0 VLR Y1, X1 CALL sm2p256SqrInternal<>(SB) VLR T0, X0 VLR T1, X1 // X- ; Y- ; MUL; T4=T // T4 = T3*T1 T2 T4 CALL sm2p256MulInternal<>(SB) VLR T0, T4L VLR T1, T4H // X- ; Y=X1; MUL; T3=T // T3 = T3*X1 T2 T3 T4 VL 16(P1ptr), Y1 // X1H VPDI $0x4, Y1, Y1, Y1 VL 0(P1ptr), Y0 // X1L VPDI $0x4, Y0, Y0, Y0 CALL sm2p256MulInternal<>(SB) VLR T0, T3L VLR T1, T3H // ADD(T1(SB) // SUB(T(SB) VLR T0, T3L VLR T1, T3H // X=T4; Y=Y1; MUL; T- // T4 = T4*Y1 T3 T4 VLR T4L, X0 VLR T4H, X1 VL 48(P1ptr), Y1 // Y1H VPDI $0x4, Y1, Y1, Y1 VL 32(P1ptr), Y0 // Y1L VPDI $0x4, Y0, Y0, Y0 CALL sm2p256MulInternal<>(SB) // SUB(T(SB) \ \ \ // SUB(X(SB) \ \ \ // ADD(T2(SB) \ VPDI $0x4, T1, T1, TT1 \ VPDI $0x4, T0, T0, TT0 \ VSTM TT0, TT1, 64(P3ptr) \ \ \ // X- ; Y=X ; MUL; T- // Y3 = Y3² VLR X0, Y0 \ VLR X1, Y1 \ CALL sm2p256SqrInternal<>(SB) \ \ \ // X=T ; Y=X1; MUL; T3=T // T3 = Y3*X1 VLR T0, X0 \ VLR T1, X1 \ VLM 0(P1ptr), Y0, Y1 \ VPDI $0x4, Y1, Y1, Y1 \ VPDI $0x4, Y0, Y0, Y0 \ CALL sm2p256MulInternal<>(SB) \ VLR T0, T3L \ VLR T1, T3H \ \ \ // X- ; Y=X ; MUL; T- // Y3 = Y3² VLR X0, Y0 \ VLR X1, Y1 \ CALL sm2p256SqrInternal<>(SB) \ \ \ // HAL(Y3(SB) \ \ \ // ADD(T1(SB) \ \ \ // SUB(Y3+0x00(SB), CPOOL VLM (CPOOL), PH, PL p256PointDoubleRound(P1ptr, P3ptr) RET TEXT ·p256PointDouble6TimesAsm(SB), NOSPLIT, $0 MOVD res+0(FP), P3ptr MOVD in+8(FP), P1ptr MOVD $p256mul<>+0x00(SB), CPOOL VLM (CPOOL), PH, PL p256PointDoubleRound(P1ptr, P3ptr) p256PointDoubleRound(P3ptr, P3ptr) p256PointDoubleRound(P3ptr, P3ptr) p256PointDoubleRound(P3ptr, P3ptr) p256PointDoubleRound(P3ptr, P3ptr) p256PointDoubleRound(P3ptr, P3ptr) RET #undef P3ptr #undef P1ptr #undef CPOOL #undef X3L #undef X3H #undef Y3L #undef Y3H #undef T1L #undef T1H #undef T2L #undef T2H #undef T3L #undef T3H #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef TT0 #undef TT1 #undef T2 #undef X0 #undef X1 #undef Y0 #undef Y1 #undef T0 #undef T1 #undef PL #undef PH #undef Z3L #undef Z3H #undef ZER #undef SEL1 #undef CAR1 #undef CAR2 // func p256PointAddAsm(res, in1, in2 *P256Point) int #define P3ptr R1 #define P1ptr R2 #define P2ptr R3 #define CPOOL R4 #define ISZERO R5 #define TRUE R6 // Temporaries in REGs #define T1L V16 #define T1H V17 #define T2L V18 #define T2H V19 #define U1L V20 #define U1H V21 #define S1L V22 #define S1H V23 #define HL V24 #define HH V25 #define RL V26 #define RH V27 // Temps for Sub and Add #define ZER V6 #define SEL1 V7 #define CAR1 V8 #define CAR2 V9 #define TT0 V11 #define TT1 V12 #define T2 V13 // p256MulAsm Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define T0 V4 #define T1 V5 #define PL V31 #define PH V30 /* * https://delta.cs.cinvestav.mx/~francisco/arith/julio.pdf "Software Implementation of the NIST Elliptic Curves Over Prime Fields" * * A = X₁×Z₂² * B = Y₁×Z₂³ * C = X₂×Z₁²-A * D = Y₂×Z₁³-B * X₃ = D² - 2A×C² - C³ * Y₃ = D×(A×C² - X₃) - B×C³ * Z₃ = Z₁×Z₂×C * * Three-operand formula (adopted): https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2 * Temp storage: T1,T2,U1,H,Z3=X3=Y3,S1,R * * T1 = Z1*Z1 * T2 = Z2*Z2 * U1 = X1*T2 * H = X2*T1 * H = H-U1 * Z3 = Z1*Z2 * Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array * * S1 = Z2*T2 * S1 = Y1*S1 * R = Z1*T1 * R = Y2*R * R = R-S1 * * T1 = H*H * T2 = H*T1 * U1 = U1*T1 * * X3 = R*R * X3 = X3-T2 * T1 = 2*U1 * X3 = X3-T1 << store-out X3 result reg * * T2 = S1*T2 * Y3 = U1-X3 * Y3 = R*Y3 * Y3 = Y3-T2 << store-out Y3 result reg // X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1 // X- ; Y=T ; MUL; R=T // R = Z1*T1 // X=X2; Y- ; MUL; H=T // H = X2*T1 // X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2 // X- ; Y=T ; MUL; S1=T // S1 = Z2*T2 // X=X1; Y- ; MUL; U1=T // U1 = X1*T2 // SUB(H+0x00(SB), CPOOL VLM (CPOOL), PH, PL // X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1 VLM 64(P1ptr), X0, X1 // Z1L, Z1H VPDI $0x4, X1, X1, X1 VPDI $0x4, X0, X0, X0 VLR X0, Y0 VLR X1, Y1 CALL sm2p256SqrInternal<>(SB) // X- ; Y=T ; MUL; R=T // R = Z1*T1 VLR T0, Y0 VLR T1, Y1 CALL sm2p256MulInternal<>(SB) VLR T0, RL VLR T1, RH // X=X2; Y- ; MUL; H=T // H = X2*T1 VLM (P2ptr), X0, X1 // X2L, X2H VPDI $0x4, X1, X1, X1 VPDI $0x4, X0, X0, X0 CALL sm2p256MulInternal<>(SB) VLR T0, HL VLR T1, HH // X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2 VLM 64(P2ptr), X0, X1 // Z2L, Z2H VPDI $0x4, X1, X1, X1 VPDI $0x4, X0, X0, X0 VLR X0, Y0 VLR X1, Y1 CALL sm2p256SqrInternal<>(SB) // X- ; Y=T ; MUL; S1=T // S1 = Z2*T2 VLR T0, Y0 VLR T1, Y1 CALL sm2p256MulInternal<>(SB) VLR T0, S1L VLR T1, S1H // X=X1; Y- ; MUL; U1=T // U1 = X1*T2 VLM (P1ptr), X0, X1 // X1L, X1H VPDI $0x4, X1, X1, X1 VPDI $0x4, X0, X0, X0 CALL sm2p256MulInternal<>(SB) VLR T0, U1L VLR T1, U1H // SUB(H(SB) // X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H VLR T0, X0 VLR T1, X1 VLR HL, Y0 VLR HH, Y1 CALL sm2p256MulInternal<>(SB) VPDI $0x4, T1, T1, TT1 VPDI $0x4, T0, T0, TT0 VSTM TT0, TT1, 64(P3ptr) // X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1 VLM 32(P1ptr), X0, X1 VPDI $0x4, X1, X1, X1 VPDI $0x4, X0, X0, X0 VLR S1L, Y0 VLR S1H, Y1 CALL sm2p256MulInternal<>(SB) VLR T0, S1L VLR T1, S1H // X=Y2; Y=R ; MUL; T- // R = Y2*R VLM 32(P2ptr), X0, X1 VPDI $0x4, X1, X1, X1 VPDI $0x4, X0, X0, X0 VLR RL, Y0 VLR RH, Y1 CALL sm2p256MulInternal<>(SB) // SUB(R(SB) // X- ; Y=T ; MUL; T2=T // T2 = H*T1 VLR T0, Y0 VLR T1, Y1 CALL sm2p256MulInternal<>(SB) VLR T0, T2L VLR T1, T2H // X=U1; Y- ; MUL; U1=T // U1 = U1*T1 VLR U1L, X0 VLR U1H, X1 CALL sm2p256MulInternal<>(SB) VLR T0, U1L VLR T1, U1H // X=R ; Y=R ; MUL; T- // X3 = R*R VLR RL, X0 VLR RH, X1 VLR RL, Y0 VLR RH, Y1 CALL sm2p256SqrInternal<>(SB) // SUB(T(SB) VLR T0, U1L VLR T1, U1H // X=S1; Y=T2; MUL; T- // T2 = S1*T2 VLR S1L, X0 VLR S1H, X1 VLR T2L, Y0 VLR T2H, Y1 CALL sm2p256MulInternal<>(SB) // SUB(T+0x00(SB), CPOOL VLM (CPOOL), PH, PL VLM (res_ptr), T0, T1 VPDI $0x4, T0, T0, T0 VPDI $0x4, T1, T1, T1 VSCBIQ PL, T0, CAR1 VSQ PL, T0, TT0 VSBCBIQ T1, PH, CAR1, CAR2 VSBIQ T1, PH, CAR1, TT1 VSBIQ T2, ZER, CAR2, T2 // what output to use, TT1||TT0 or T1||T0? VSEL T0, TT0, T2, T0 VSEL T1, TT1, T2, T1 VPDI $0x4, T0, T0, TT0 VPDI $0x4, T1, T1, TT1 VSTM TT0, TT1, (res_ptr) RET #undef res_ptr #undef CPOOL #undef T0 #undef T1 #undef T2 #undef TT0 #undef TT1 #undef ZER #undef CAR1 #undef CAR2 #undef PL #undef PH