package bn256 import "math/big" // gfP12b6 implements the field of size p¹² as a quadratic extension of gfP6 // where t²=s. type gfP12b6 struct { x, y gfP6 // value is xt + y } func gfP12b6Decode(in *gfP12b6) *gfP12b6 { out := &gfP12b6{} out.x = *gfP6Decode(&in.x) out.y = *gfP6Decode(&in.y) return out } var gfP12b6Gen *gfP12b6 = &gfP12b6{ x: gfP6{ x: gfP2{ x: *fromBigInt(bigFromHex("256943fbdb2bf87ab91ae7fbeaff14e146cf7e2279b9d155d13461e09b22f523")), y: *fromBigInt(bigFromHex("0167b0280051495c6af1ec23ba2cd2ff1cdcdeca461a5ab0b5449e9091308310")), }, y: gfP2{ x: *fromBigInt(bigFromHex("8ffe1c0e9de45fd0fed790ac26be91f6b3f0a49c084fe29a3fb6ed288ad7994d")), y: *fromBigInt(bigFromHex("1664a1366beb3196f0443e15f5f9042a947354a5678430d45ba031cff06db927")), }, z: gfP2{ x: *fromBigInt(bigFromHex("7fc6eb2aa771d99c9234fddd31752edfd60723e05a4ebfdeb5c33fbd47e0cf06")), y: *fromBigInt(bigFromHex("6fa6b6fa6dd6b6d3b19a959a110e748154eef796dc0fc2dd766ea414de786968")), }, }, y: gfP6{ x: gfP2{ x: *fromBigInt(bigFromHex("082cde173022da8cd09b28a2d80a8cee53894436a52007f978dc37f36116d39b")), y: *fromBigInt(bigFromHex("3fa7ed741eaed99a58f53e3df82df7ccd3407bcc7b1d44a9441920ced5fb824f")), }, y: gfP2{ x: *fromBigInt(bigFromHex("5e7addaddf7fbfe16291b4e89af50b8217ddc47ba3cba833c6e77c3fb027685e")), y: *fromBigInt(bigFromHex("79d0c8337072c93fef482bb055f44d6247ccac8e8e12525854b3566236337ebe")), }, z: gfP2{ x: *fromBigInt(bigFromHex("7f7c6d52b475e6aaa827fdc5b4175ac6929320f782d998f86b6b57cda42a0426")), y: *fromBigInt(bigFromHex("36a699de7c136f78eee2dbac4ca9727bff0cee02ee920f5822e65ea170aa9669")), }, }, } func (e *gfP12b6) String() string { return "(" + e.x.String() + "," + e.y.String() + ")" } func (e *gfP12b6) ToGfP12() *gfP12 { ret := &gfP12{} ret.z.y.Set(&e.y.z) ret.x.y.Set(&e.y.y) ret.y.x.Set(&e.y.x) ret.y.y.Set(&e.x.z) ret.z.x.Set(&e.x.y) ret.x.x.Set(&e.x.x) return ret } func (e *gfP12b6) SetGfP12(a *gfP12) *gfP12b6 { e.y.z.Set(&a.z.y) //a e.y.y.Set(&a.x.y) //b e.y.x.Set(&a.y.x) e.x.z.Set(&a.y.y) e.x.y.Set(&a.z.x) //c e.x.x.Set(&a.x.x) return e } func (e *gfP12b6) Set(a *gfP12b6) *gfP12b6 { e.x.Set(&a.x) e.y.Set(&a.y) return e } func (e *gfP12b6) SetZero() *gfP12b6 { e.x.SetZero() e.y.SetZero() return e } func (e *gfP12b6) SetOne() *gfP12b6 { e.x.SetZero() e.y.SetOne() return e } func (e *gfP12b6) IsZero() bool { return e.x.IsZero() && e.y.IsZero() } func (e *gfP12b6) IsOne() bool { return e.x.IsZero() && e.y.IsOne() } func (e *gfP12b6) Neg(a *gfP12b6) *gfP12b6 { e.x.Neg(&a.x) e.y.Neg(&a.y) return e } func (e *gfP12b6) Conjugate(a *gfP12b6) *gfP12b6 { e.x.Neg(&a.x) e.y.Set(&a.y) return e } func (e *gfP12b6) Add(a, b *gfP12b6) *gfP12b6 { e.x.Add(&a.x, &b.x) e.y.Add(&a.y, &b.y) return e } func (e *gfP12b6) Sub(a, b *gfP12b6) *gfP12b6 { e.x.Sub(&a.x, &b.x) e.y.Sub(&a.y, &b.y) return e } func (e *gfP12b6) Mul(a, b *gfP12b6) *gfP12b6 { tmp := &gfP12b6{} tmp.MulNC(a, b) e.x.Set(&tmp.x) e.y.Set(&tmp.y) return e } // Mul without value copy, will use e directly, so e can't be same as a and b. func (e *gfP12b6) MulNC(a, b *gfP12b6) *gfP12b6 { // "Multiplication and Squaring on Pairing-Friendly Fields" // Section 4, Karatsuba method. // http://eprint.iacr.org/2006/471.pdf //(a0+a1*t)(b0+b1*t)=c0+c1*t, where //c0 = a0*b0 +a1*b1*s //c1 = (a0 + a1)(b0 + b1) - a0*b0 - a1*b1 = a0*b1 + a1*b0 tx := &e.x ty := &e.y v0, v1 := &gfP6{}, &gfP6{} v0.MulNC(&a.y, &b.y) v1.MulNC(&a.x, &b.x) tx.Add(&a.x, &a.y) ty.Add(&b.x, &b.y) tx.Mul(tx, ty) tx.Sub(tx, v0) tx.Sub(tx, v1) ty.MulS(v1) ty.Add(ty, v0) return e } func (e *gfP12b6) MulScalar(a *gfP12b6, b *gfP6) *gfP12b6 { e.x.Mul(&a.x, b) e.y.Mul(&a.y, b) return e } func (e *gfP12b6) MulGfP(a *gfP12b6, b *gfP) *gfP12b6 { e.x.MulGfP(&a.x, b) e.y.MulGfP(&a.y, b) return e } func (e *gfP12b6) MulGfP2(a *gfP12b6, b *gfP2) *gfP12b6 { e.x.MulScalar(&a.x, b) e.y.MulScalar(&a.y, b) return e } func (e *gfP12b6) Square(a *gfP12b6) *gfP12b6 { tmp := &gfP12b6{} tmp.SquareNC(a) e.x.Set(&tmp.x) e.y.Set(&tmp.y) return e } // Square without value copy, will use e directly, so e can't be same as a. func (e *gfP12b6) SquareNC(a *gfP12b6) *gfP12b6 { // Complex squaring algorithm // (xt+y)² = (x^2*s + y^2) + 2*x*y*t tx := &e.x ty := &e.y tx.SquareNC(&a.x).MulS(tx) ty.SquareNC(&a.y) ty.Add(tx, ty) tx.Mul(&a.x, &a.y) tx.Add(tx, tx) return e } // Cyclo6Square is used in final exponentiation after easy part(a ^ ((p^2 + 1)(p^6-1))). // Note that after the easy part of the final exponentiation, // the resulting element lies in cyclotomic subgroup. // "New software speed records for cryptographic pairings" // Section 3.3, Final exponentiation // https://cryptojedi.org/papers/dclxvi-20100714.pdf // The fomula reference: // Granger/Scott (PKC2010). // Section 3.2 // https://eprint.iacr.org/2009/565.pdf func (e *gfP12b6) Cyclo6Square(a *gfP12b6) *gfP12b6 { tmp := &gfP12b6{} tmp.Cyclo6SquareNC(a) e.x.Set(&tmp.x) e.y.Set(&tmp.y) return e } // Special Square without value copy, will use e directly, so e can't be same as a. func (e *gfP12b6) Cyclo6SquareNC(a *gfP12b6) *gfP12b6 { f02 := &e.y.x f01 := &e.y.y f00 := &e.y.z f12 := &e.x.x f11 := &e.x.y f10 := &e.x.z t00, t01, t02, t10, t11, t12 := &gfP2{}, &gfP2{}, &gfP2{}, &gfP2{}, &gfP2{}, &gfP2{} gfP4Square(t11, t00, &a.x.y, &a.y.z) gfP4Square(t12, t01, &a.y.x, &a.x.z) gfP4Square(t02, t10, &a.x.x, &a.y.y) f00.MulU1(t02) t02.Set(t10) t10.Set(f00) f00.Add(t00, t00) t00.Add(f00, t00) f00.Add(t01, t01) t01.Add(f00, t01) f00.Add(t02, t02) t02.Add(f00, t02) f00.Add(t10, t10) t10.Add(f00, t10) f00.Add(t11, t11) t11.Add(f00, t11) f00.Add(t12, t12) t12.Add(f00, t12) f00.Add(&a.y.z, &a.y.z) f00.Neg(f00) f01.Add(&a.y.y, &a.y.y) f01.Neg(f01) f02.Add(&a.y.x, &a.y.x) f02.Neg(f02) f10.Add(&a.x.z, &a.x.z) f11.Add(&a.x.y, &a.x.y) f12.Add(&a.x.x, &a.x.x) f00.Add(f00, t00) f01.Add(f01, t01) f02.Add(f02, t02) f10.Add(f10, t10) f11.Add(f11, t11) f12.Add(f12, t12) return e } func (e *gfP12b6) Cyclo6Squares(a *gfP12b6, n int) *gfP12b6 { // Square first round in := &gfP12b6{} f02 := &in.y.x f01 := &in.y.y f00 := &in.y.z f12 := &in.x.x f11 := &in.x.y f10 := &in.x.z t00, t01, t02, t10, t11, t12 := &gfP2{}, &gfP2{}, &gfP2{}, &gfP2{}, &gfP2{}, &gfP2{} gfP4Square(t11, t00, &a.x.y, &a.y.z) gfP4Square(t12, t01, &a.y.x, &a.x.z) gfP4Square(t02, t10, &a.x.x, &a.y.y) f00.MulU1(t02) t02.Set(t10) t10.Set(f00) f00.Add(t00, t00) t00.Add(f00, t00) f00.Add(t01, t01) t01.Add(f00, t01) f00.Add(t02, t02) t02.Add(f00, t02) f00.Add(t10, t10) t10.Add(f00, t10) f00.Add(t11, t11) t11.Add(f00, t11) f00.Add(t12, t12) t12.Add(f00, t12) f00.Add(&a.y.z, &a.y.z) f00.Neg(f00) f01.Add(&a.y.y, &a.y.y) f01.Neg(f01) f02.Add(&a.y.x, &a.y.x) f02.Neg(f02) f10.Add(&a.x.z, &a.x.z) f11.Add(&a.x.y, &a.x.y) f12.Add(&a.x.x, &a.x.x) f00.Add(f00, t00) f01.Add(f01, t01) f02.Add(f02, t02) f10.Add(f10, t10) f11.Add(f11, t11) f12.Add(f12, t12) tmp := &gfP12b6{} var tmp2 *gfP12b6 for i := 1; i < n; i++ { f02 = &tmp.y.x f01 = &tmp.y.y f00 = &tmp.y.z f12 = &tmp.x.x f11 = &tmp.x.y f10 = &tmp.x.z gfP4Square(t11, t00, &in.x.y, &in.y.z) gfP4Square(t12, t01, &in.y.x, &in.x.z) gfP4Square(t02, t10, &in.x.x, &in.y.y) f00.MulU1(t02) t02.Set(t10) t10.Set(f00) f00.Add(t00, t00) t00.Add(f00, t00) f00.Add(t01, t01) t01.Add(f00, t01) f00.Add(t02, t02) t02.Add(f00, t02) f00.Add(t10, t10) t10.Add(f00, t10) f00.Add(t11, t11) t11.Add(f00, t11) f00.Add(t12, t12) t12.Add(f00, t12) f00.Add(&in.y.z, &in.y.z) f00.Neg(f00) f01.Add(&in.y.y, &in.y.y) f01.Neg(f01) f02.Add(&in.y.x, &in.y.x) f02.Neg(f02) f10.Add(&in.x.z, &in.x.z) f11.Add(&in.x.y, &in.x.y) f12.Add(&in.x.x, &in.x.x) f00.Add(f00, t00) f01.Add(f01, t01) f02.Add(f02, t02) f10.Add(f10, t10) f11.Add(f11, t11) f12.Add(f12, t12) // Switch references tmp2 = in in = tmp tmp = tmp2 } e.x.Set(&in.x) e.y.Set(&in.y) return e } func gfP4Square(retX, retY, x, y *gfP2) { retX.SquareU(x) retY.Square(y) retY.Add(retX, retY) retX.Mul(x, y) retX.Add(retX, retX) } func (c *gfP12b6) Exp(a *gfP12b6, power *big.Int) *gfP12b6 { sum := (&gfP12b6{}).SetOne() t := &gfP12b6{} for i := power.BitLen() - 1; i >= 0; i-- { t.Square(sum) if power.Bit(i) != 0 { sum.Mul(t, a) } else { sum.Set(t) } } c.Set(sum) return c } func (e *gfP12b6) Invert(a *gfP12b6) *gfP12b6 { // See "Implementing cryptographic pairings", M. Scott, section 3.2. // ftp://136.206.11.249/pub/crypto/pairings.pdf t0, t1 := &gfP6{}, &gfP6{} t0.MulNC(&a.y, &a.y) t1.MulNC(&a.x, &a.x).MulS(t1) t0.Sub(t0, t1) t0.Invert(t0) e.x.Neg(&a.x) e.y.Set(&a.y) e.MulScalar(e, t0) return e } // Frobenius computes (xt+y)^p // = x^p t^p + y^p // = x^p t^(p-1) t + y^p // = x^p s^((p-1)/2) t + y^p // sToPMinus1Over2 func (e *gfP12b6) Frobenius(a *gfP12b6) *gfP12b6 { e.x.Frobenius(&a.x) e.y.Frobenius(&a.y) e.x.MulGfP(&e.x, sToPMinus1Over2) return e } // FrobeniusP2 computes (xt+y)^p² = x^p² t ·s^((p²-1)/2) + y^p² func (e *gfP12b6) FrobeniusP2(a *gfP12b6) *gfP12b6 { e.x.FrobeniusP2(&a.x) e.y.FrobeniusP2(&a.y) e.x.MulGfP(&e.x, sToPSquaredMinus1Over2) return e } func (e *gfP12b6) FrobeniusP4(a *gfP12b6) *gfP12b6 { e.x.FrobeniusP4(&a.x) e.y.FrobeniusP4(&a.y) e.x.MulGfP(&e.x, sToPSquaredMinus1) return e } func (e *gfP12b6) FrobeniusP6(a *gfP12b6) *gfP12b6 { e.x.Neg(&a.x) e.y.Set(&a.y) return e } // Select sets q to p1 if cond == 1, and to p2 if cond == 0. func (q *gfP12b6) Select(p1, p2 *gfP12b6, cond int) *gfP12b6 { q.x.Select(&p1.x, &p2.x, cond) q.y.Select(&p1.y, &p2.y, cond) return q }