// Package sm2 implements ShangMi(SM) sm2 digital signature, public key encryption and key exchange algorithms. package sm2 // Further references: // [NSA]: Suite B implementer's guide to FIPS 186-3 // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.4503&rep=rep1&type=pdf // [SECG]: SECG, SEC1 // http://www.secg.org/sec1-v2.pdf // [GM/T]: SM2 GB/T 32918.2-2016, GB/T 32918.4-2016 // import ( "crypto" "crypto/ecdsa" "crypto/elliptic" _subtle "crypto/subtle" "errors" "fmt" "io" "math/big" "sync" "github.com/emmansun/gmsm/ecdh" "github.com/emmansun/gmsm/internal/bigmod" "github.com/emmansun/gmsm/internal/randutil" _sm2ec "github.com/emmansun/gmsm/internal/sm2ec" "github.com/emmansun/gmsm/internal/subtle" "github.com/emmansun/gmsm/kdf" "github.com/emmansun/gmsm/sm2/sm2ec" "github.com/emmansun/gmsm/sm3" "golang.org/x/crypto/cryptobyte" "golang.org/x/crypto/cryptobyte/asn1" ) const ( uncompressed byte = 0x04 compressed02 byte = 0x02 compressed03 byte = compressed02 | 0x01 hybrid06 byte = 0x06 hybrid07 byte = hybrid06 | 0x01 ) // PrivateKey represents an ECDSA SM2 private key. // It implemented both crypto.Decrypter and crypto.Signer interfaces. type PrivateKey struct { ecdsa.PrivateKey } type pointMarshalMode byte const ( //MarshalUncompressed uncompressed mashal mode MarshalUncompressed pointMarshalMode = iota //MarshalCompressed compressed mashal mode MarshalCompressed //MarshalHybrid hybrid mashal mode MarshalHybrid ) type ciphertextSplicingOrder byte const ( C1C3C2 ciphertextSplicingOrder = iota C1C2C3 ) type ciphertextEncoding byte const ( ENCODING_PLAIN ciphertextEncoding = iota ENCODING_ASN1 ) // EncrypterOpts encryption options type EncrypterOpts struct { ciphertextEncoding ciphertextEncoding pointMarshalMode pointMarshalMode ciphertextSplicingOrder ciphertextSplicingOrder } // DecrypterOpts decryption options type DecrypterOpts struct { ciphertextEncoding ciphertextEncoding cipherTextSplicingOrder ciphertextSplicingOrder } // NewPlainEncrypterOpts creates a SM2 non-ASN1 encrypter options. func NewPlainEncrypterOpts(marhsalMode pointMarshalMode, splicingOrder ciphertextSplicingOrder) *EncrypterOpts { return &EncrypterOpts{ENCODING_PLAIN, marhsalMode, splicingOrder} } // NewPlainDecrypterOpts creates a SM2 non-ASN1 decrypter options. func NewPlainDecrypterOpts(splicingOrder ciphertextSplicingOrder) *DecrypterOpts { return &DecrypterOpts{ENCODING_PLAIN, splicingOrder} } func toBytes(curve elliptic.Curve, value *big.Int) []byte { byteLen := (curve.Params().BitSize + 7) >> 3 result := make([]byte, byteLen) value.FillBytes(result) return result } var defaultEncrypterOpts = &EncrypterOpts{ENCODING_PLAIN, MarshalUncompressed, C1C3C2} var ASN1EncrypterOpts = &EncrypterOpts{ENCODING_ASN1, MarshalUncompressed, C1C3C2} var ASN1DecrypterOpts = &DecrypterOpts{ENCODING_ASN1, C1C3C2} // directSigning is a standard Hash value that signals that no pre-hashing // should be performed. var directSigning crypto.Hash = 0 // Signer SM2 special signer type Signer interface { SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error) } // SM2SignerOption implements crypto.SignerOpts interface. // It is specific for SM2, used in private key's Sign method. type SM2SignerOption struct { uid []byte forceGMSign bool } // NewSM2SignerOption creates a SM2 specific signer option. // forceGMSign - if use GM specific sign logic, if yes, should pass raw message to sign. // uid - if forceGMSign is true, then you can pass uid, if no uid is provided, system will use default one. func NewSM2SignerOption(forceGMSign bool, uid []byte) *SM2SignerOption { opt := &SM2SignerOption{ uid: uid, forceGMSign: forceGMSign, } if forceGMSign && len(uid) == 0 { opt.uid = defaultUID } return opt } // DefaultSM2SignerOpts uses default UID and forceGMSign is true. var DefaultSM2SignerOpts = NewSM2SignerOption(true, nil) func (*SM2SignerOption) HashFunc() crypto.Hash { return directSigning } // FromECPrivateKey convert an ecdsa private key to SM2 private key. func (priv *PrivateKey) FromECPrivateKey(key *ecdsa.PrivateKey) (*PrivateKey, error) { if key.Curve != sm2ec.P256() { return nil, errors.New("sm2: it's NOT a sm2 curve private key") } priv.PrivateKey = *key return priv, nil } func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { xx, ok := x.(*PrivateKey) if !ok { return false } return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D) } // bigIntEqual reports whether a and b are equal leaking only their bit length // through timing side-channels. func bigIntEqual(a, b *big.Int) bool { return _subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1 } // Sign signs digest with priv, reading randomness from rand. Compliance with GB/T 32918.2-2016. // The opts argument is currently used for SM2SignerOption checking only. // If the opts argument is SM2SignerOption and its ForceGMSign is true, // digest argument will be treated as raw data and UID will be taken from opts. // // This method implements crypto.Signer, which is an interface to support keys // where the private part is kept in, for example, a hardware module. func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { return SignASN1(rand, priv, digest, opts) } // SignWithSM2 signs uid, msg with priv, reading randomness from rand. Compliance with GB/T 32918.2-2016. // Deprecated: please use Sign method directly. func (priv *PrivateKey) SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error) { return priv.Sign(rand, msg, NewSM2SignerOption(true, uid)) } // Decrypt decrypts ciphertext msg to plaintext. // The opts argument should be appropriate for the primitive used. // Compliance with GB/T 32918.4-2016 chapter 7. func (priv *PrivateKey) Decrypt(rand io.Reader, msg []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { var sm2Opts *DecrypterOpts sm2Opts, _ = opts.(*DecrypterOpts) return decrypt(priv, msg, sm2Opts) } const maxRetryLimit = 100 var ( errCiphertextTooShort = errors.New("sm2: ciphertext too short") ) // EncryptASN1 sm2 encrypt and output ASN.1 result, compliance with GB/T 32918.4-2016. // // The random parameter is used as a source of entropy to ensure that // encrypting the same message twice doesn't result in the same ciphertext. // Most applications should use [crypto/rand.Reader] as random. func EncryptASN1(random io.Reader, pub *ecdsa.PublicKey, msg []byte) ([]byte, error) { return Encrypt(random, pub, msg, ASN1EncrypterOpts) } // Encrypt sm2 encrypt implementation, compliance with GB/T 32918.4-2016. // // The random parameter is used as a source of entropy to ensure that // encrypting the same message twice doesn't result in the same ciphertext. // Most applications should use [crypto/rand.Reader] as random. func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *EncrypterOpts) ([]byte, error) { //A3, requirement is to check if h*P is infinite point, h is 1 if pub.X.Sign() == 0 && pub.Y.Sign() == 0 { return nil, errors.New("sm2: public key point is the infinity") } if len(msg) == 0 { return nil, nil } if opts == nil { opts = defaultEncrypterOpts } switch pub.Curve.Params() { case P256().Params(): return encryptSM2EC(p256(), pub, random, msg, opts) default: return encryptLegacy(random, pub, msg, opts) } } func encryptSM2EC(c *sm2Curve, pub *ecdsa.PublicKey, random io.Reader, msg []byte, opts *EncrypterOpts) ([]byte, error) { Q, err := c.pointFromAffine(pub.X, pub.Y) if err != nil { return nil, err } var retryCount int = 0 for { k, C1, err := randomPoint(c, random) if err != nil { return nil, err } C2, err := Q.ScalarMult(Q, k.Bytes(c.N)) if err != nil { return nil, err } C2Bytes := C2.Bytes()[1:] c2 := kdf.Kdf(sm3.New(), C2Bytes, len(msg)) if subtle.ConstantTimeAllZero(c2) { retryCount++ if retryCount > maxRetryLimit { return nil, fmt.Errorf("sm2: A5, failed to calculate valid t, tried %v times", retryCount) } continue } //A6, C2 = M + t; subtle.XORBytes(c2, msg, c2) //A7, C3 = hash(x2||M||y2) md := sm3.New() md.Write(C2Bytes[:len(C2Bytes)/2]) md.Write(msg) md.Write(C2Bytes[len(C2Bytes)/2:]) c3 := md.Sum(nil) if opts.ciphertextEncoding == ENCODING_PLAIN { return encodingCiphertext(opts, C1, c2, c3) } return encodingCiphertextASN1(C1, c2, c3) } } func encodingCiphertext(opts *EncrypterOpts, C1 *_sm2ec.SM2P256Point, c2, c3 []byte) ([]byte, error) { var c1 []byte switch opts.pointMarshalMode { case MarshalCompressed: c1 = C1.BytesCompressed() default: c1 = C1.Bytes() } if opts.ciphertextSplicingOrder == C1C3C2 { // c1 || c3 || c2 return append(append(c1, c3...), c2...), nil } // c1 || c2 || c3 return append(append(c1, c2...), c3...), nil } func encodingCiphertextASN1(C1 *_sm2ec.SM2P256Point, c2, c3 []byte) ([]byte, error) { c1 := C1.Bytes() var b cryptobyte.Builder b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { addASN1IntBytes(b, c1[1:len(c1)/2+1]) addASN1IntBytes(b, c1[len(c1)/2+1:]) b.AddASN1OctetString(c3) b.AddASN1OctetString(c2) }) return b.Bytes() } // GenerateKey generates a new SM2 private key. // // Most applications should use [crypto/rand.Reader] as rand. Note that the // returned key does not depend deterministically on the bytes read from rand, // and may change between calls and/or between versions. func GenerateKey(rand io.Reader) (*PrivateKey, error) { randutil.MaybeReadByte(rand) c := p256() k, Q, err := randomPoint(c, rand) if err != nil { return nil, err } priv := new(PrivateKey) priv.PublicKey.Curve = c.curve priv.D = new(big.Int).SetBytes(k.Bytes(c.N)) priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(Q) if err != nil { return nil, err } return priv, nil } // Decrypt sm2 decrypt implementation by default DecrypterOpts{C1C3C2}. // Compliance with GB/T 32918.4-2016. func Decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) { return decrypt(priv, ciphertext, nil) } // ErrDecryption represents a failure to decrypt a message. // It is deliberately vague to avoid adaptive attacks. var ErrDecryption = errors.New("sm2: decryption error") func decrypt(priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) { ciphertextLen := len(ciphertext) if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size { return nil, errCiphertextTooShort } switch priv.Curve.Params() { case P256().Params(): return decryptSM2EC(p256(), priv, ciphertext, opts) default: return decryptLegacy(priv, ciphertext, opts) } } func decryptSM2EC(c *sm2Curve, priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) { C1, c2, c3, err := parseCiphertext(c, ciphertext, opts) if err != nil { return nil, ErrDecryption } d, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N) if err != nil { return nil, ErrDecryption } C2, err := C1.ScalarMult(C1, d.Bytes(c.N)) if err != nil { return nil, ErrDecryption } C2Bytes := C2.Bytes()[1:] msgLen := len(c2) msg := kdf.Kdf(sm3.New(), C2Bytes, msgLen) if subtle.ConstantTimeAllZero(c2) { return nil, ErrDecryption } //B5, calculate msg = c2 ^ t subtle.XORBytes(msg, c2, msg) md := sm3.New() md.Write(C2Bytes[:len(C2Bytes)/2]) md.Write(msg) md.Write(C2Bytes[len(C2Bytes)/2:]) u := md.Sum(nil) if _subtle.ConstantTimeCompare(u, c3) == 1 { return msg, nil } return nil, ErrDecryption } func parseCiphertext(c *sm2Curve, ciphertext []byte, opts *DecrypterOpts) (*_sm2ec.SM2P256Point, []byte, []byte, error) { bitSize := c.curve.Params().BitSize // Encode the coordinates and let SetBytes reject invalid points. byteLen := (bitSize + 7) / 8 splicingOrder := C1C3C2 if opts != nil { splicingOrder = opts.cipherTextSplicingOrder } b := ciphertext[0] switch b { case uncompressed: if len(ciphertext) <= 1+2*byteLen+sm3.Size { return nil, nil, nil, errCiphertextTooShort } C1, err := c.newPoint().SetBytes(ciphertext[:1+2*byteLen]) if err != nil { return nil, nil, nil, err } c2, c3 := parseCiphertextC2C3(ciphertext[1+2*byteLen:], splicingOrder) return C1, c2, c3, nil case compressed02, compressed03: C1, err := c.newPoint().SetBytes(ciphertext[:1+byteLen]) if err != nil { return nil, nil, nil, err } c2, c3 := parseCiphertextC2C3(ciphertext[1+byteLen:], splicingOrder) return C1, c2, c3, nil case byte(0x30): return parseCiphertextASN1(c, ciphertext) default: return nil, nil, nil, errors.New("sm2: invalid/unsupport ciphertext format") } } func parseCiphertextC2C3(ciphertext []byte, order ciphertextSplicingOrder) ([]byte, []byte) { if order == C1C3C2 { return ciphertext[sm3.Size:], ciphertext[:sm3.Size] } return ciphertext[:len(ciphertext)-sm3.Size], ciphertext[len(ciphertext)-sm3.Size:] } func unmarshalASN1Ciphertext(ciphertext []byte) (*big.Int, *big.Int, []byte, []byte, error) { var ( x1, y1 = &big.Int{}, &big.Int{} c2, c3 []byte inner cryptobyte.String ) input := cryptobyte.String(ciphertext) if !input.ReadASN1(&inner, asn1.SEQUENCE) || !input.Empty() || !inner.ReadASN1Integer(x1) || !inner.ReadASN1Integer(y1) || !inner.ReadASN1Bytes(&c3, asn1.OCTET_STRING) || !inner.ReadASN1Bytes(&c2, asn1.OCTET_STRING) || !inner.Empty() { return nil, nil, nil, nil, errors.New("sm2: invalid asn1 format ciphertext") } return x1, y1, c2, c3, nil } func parseCiphertextASN1(c *sm2Curve, ciphertext []byte) (*_sm2ec.SM2P256Point, []byte, []byte, error) { x1, y1, c2, c3, err := unmarshalASN1Ciphertext(ciphertext) if err != nil { return nil, nil, nil, err } C1, err := c.pointFromAffine(x1, y1) if err != nil { return nil, nil, nil, err } return C1, c2, c3, nil } var defaultUID = []byte{0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38} // CalculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA). // Compliance with GB/T 32918.2-2016 5.5. // // This function will not use default UID even the uid argument is empty. func CalculateZA(pub *ecdsa.PublicKey, uid []byte) ([]byte, error) { uidLen := len(uid) if uidLen >= 0x2000 { return nil, errors.New("sm2: the uid is too long") } entla := uint16(uidLen) << 3 md := sm3.New() md.Write([]byte{byte(entla >> 8), byte(entla)}) if uidLen > 0 { md.Write(uid) } a := new(big.Int).Sub(pub.Params().P, big.NewInt(3)) md.Write(toBytes(pub.Curve, a)) md.Write(toBytes(pub.Curve, pub.Params().B)) md.Write(toBytes(pub.Curve, pub.Params().Gx)) md.Write(toBytes(pub.Curve, pub.Params().Gy)) md.Write(toBytes(pub.Curve, pub.X)) md.Write(toBytes(pub.Curve, pub.Y)) return md.Sum(nil), nil } func calculateSM2Hash(pub *ecdsa.PublicKey, data, uid []byte) ([]byte, error) { if len(uid) == 0 { uid = defaultUID } za, err := CalculateZA(pub, uid) if err != nil { return nil, err } md := sm3.New() md.Write(za) md.Write(data) return md.Sum(nil), nil } // SignASN1 signs a hash (which should be the result of hashing a larger message) // using the private key, priv. If the hash is longer than the bit-length of the // private key's curve order, the hash will be truncated to that length. It // returns the ASN.1 encoded signature. // // The signature is randomized. Most applications should use [crypto/rand.Reader] // as rand. Note that the returned signature does not depend deterministically on // the bytes read from rand, and may change between calls and/or between versions. // // If the opts argument is instance of [*SM2SignerOption], and its ForceGMSign is true, // then the hash will be treated as raw message. func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte, opts crypto.SignerOpts) ([]byte, error) { if sm2Opts, ok := opts.(*SM2SignerOption); ok && sm2Opts.forceGMSign { newHash, err := calculateSM2Hash(&priv.PublicKey, hash, sm2Opts.uid) if err != nil { return nil, err } hash = newHash } randutil.MaybeReadByte(rand) switch priv.Curve.Params() { case P256().Params(): return signSM2EC(p256(), priv, rand, hash) default: return signLegacy(priv, rand, hash) } } func signSM2EC(c *sm2Curve, priv *PrivateKey, rand io.Reader, hash []byte) (sig []byte, err error) { e := bigmod.NewNat() hashToNat(c, e, hash) var ( k, r, s, dp1Inv, oneNat *bigmod.Nat R *_sm2ec.SM2P256Point ) oneNat, err = bigmod.NewNat().SetBytes(one.Bytes(), c.N) if err != nil { return nil, err } dp1Inv, err = bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N) if err != nil { return nil, err } dp1Inv.Add(oneNat, c.N) dp1Bytes, err := _sm2ec.P256OrdInverse(dp1Inv.Bytes(c.N)) if err != nil { return nil, err } dp1Inv, err = bigmod.NewNat().SetBytes(dp1Bytes, c.N) if err != nil { panic("sm2: internal error: P256OrdInverse produced an invalid value") } for { for { k, R, err = randomPoint(c, rand) if err != nil { return nil, err } Rx, err := R.BytesX() if err != nil { return nil, err } r, err = bigmod.NewNat().SetOverflowingBytes(Rx, c.N) if err != nil { return nil, err } r.Add(e, c.N) // r = (Rx + e) mod N if r.IsZero() == 0 { t := bigmod.NewNat().Set(k) t.Add(r, c.N) if t.IsZero() == 0 { // if (r + k) != N then ok break } } } s, err = bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N) if err != nil { return nil, err } s.Mul(r, c.N) k.Sub(s, c.N) k.Mul(dp1Inv, c.N) if k.IsZero() == 0 { break } } return encodeSignature(r.Bytes(c.N), k.Bytes(c.N)) } func encodeSignature(r, s []byte) ([]byte, error) { var b cryptobyte.Builder b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { addASN1IntBytes(b, r) addASN1IntBytes(b, s) }) return b.Bytes() } // addASN1IntBytes encodes in ASN.1 a positive integer represented as // a big-endian byte slice with zero or more leading zeroes. func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) { for len(bytes) > 0 && bytes[0] == 0 { bytes = bytes[1:] } if len(bytes) == 0 { b.SetError(errors.New("invalid integer")) return } b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) { if bytes[0]&0x80 != 0 { c.AddUint8(0) } c.AddBytes(bytes) }) } // VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the // public key, pub. Its return value records whether the signature is valid. // // Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not. // Caller should make sure the hash's correctness, in other words, // the caller must pre-calculate the hash value. func VerifyASN1(pub *ecdsa.PublicKey, hash, sig []byte) bool { switch pub.Curve.Params() { case P256().Params(): return verifySM2EC(p256(), pub, hash, sig) default: return verifyLegacy(pub, hash, sig) } } func verifySM2EC(c *sm2Curve, pub *ecdsa.PublicKey, hash, sig []byte) bool { rBytes, sBytes, err := parseSignature(sig) if err != nil { return false } Q, err := c.pointFromAffine(pub.X, pub.Y) if err != nil { return false } r, err := bigmod.NewNat().SetBytes(rBytes, c.N) if err != nil || r.IsZero() == 1 { return false } s, err := bigmod.NewNat().SetBytes(sBytes, c.N) if err != nil || s.IsZero() == 1 { return false } e := bigmod.NewNat() hashToNat(c, e, hash) t := bigmod.NewNat().Set(r) t.Add(s, c.N) if t.IsZero() == 1 { return false } p1, err := c.newPoint().ScalarBaseMult(s.Bytes(c.N)) if err != nil { return false } p2, err := Q.ScalarMult(Q, t.Bytes(c.N)) if err != nil { return false } Rx, err := p1.Add(p1, p2).BytesX() if err != nil { return false } v, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N) if err != nil { return false } v.Add(e, c.N) return v.Equal(r) == 1 } // VerifyASN1WithSM2 verifies the signature in ASN.1 encoding format sig of raw msg // and uid using the public key, pub. The uid can be empty, meaning to use the default value. // // It returns value records whether the signature is valid. Compliance with GB/T 32918.2-2016. func VerifyASN1WithSM2(pub *ecdsa.PublicKey, uid, msg, sig []byte) bool { digest, err := calculateSM2Hash(pub, msg, uid) if err != nil { return false } return VerifyASN1(pub, digest, sig) } func parseSignature(sig []byte) (r, s []byte, err error) { var inner cryptobyte.String input := cryptobyte.String(sig) if !input.ReadASN1(&inner, asn1.SEQUENCE) || !input.Empty() || !inner.ReadASN1Integer(&r) || !inner.ReadASN1Integer(&s) || !inner.Empty() { return nil, nil, errors.New("invalid ASN.1") } return r, s, nil } // hashToNat sets e to the left-most bits of hash, according to // SEC 1, Section 4.1.3, point 5 and Section 4.1.4, point 3. func hashToNat(c *sm2Curve, e *bigmod.Nat, hash []byte) { // ECDSA asks us to take the left-most log2(N) bits of hash, and use them as // an integer modulo N. This is the absolute worst of all worlds: we still // have to reduce, because the result might still overflow N, but to take // the left-most bits for P-521 we have to do a right shift. if size := c.N.Size(); len(hash) > size { hash = hash[:size] if excess := len(hash)*8 - c.N.BitLen(); excess > 0 { hash = append([]byte{}, hash...) for i := len(hash) - 1; i >= 0; i-- { hash[i] >>= excess if i > 0 { hash[i] |= hash[i-1] << (8 - excess) } } } } _, err := e.SetOverflowingBytes(hash, c.N) if err != nil { panic("sm2: internal error: truncated hash is too long") } } // IsSM2PublicKey check if given public key is a SM2 public key or not func IsSM2PublicKey(publicKey interface{}) bool { pub, ok := publicKey.(*ecdsa.PublicKey) return ok && pub.Curve == sm2ec.P256() } // P256 returns sm2 curve signleton, this function is for backward compatibility. func P256() elliptic.Curve { return sm2ec.P256() } // PublicKeyToECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is // invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the // Curve is not supported by ecdh. func PublicKeyToECDH(k *ecdsa.PublicKey) (*ecdh.PublicKey, error) { c := curveToECDH(k.Curve) if c == nil { return nil, errors.New("sm2: unsupported curve by ecdh") } if !k.Curve.IsOnCurve(k.X, k.Y) { return nil, errors.New("sm2: invalid public key") } return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y)) } // ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is // invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the // Curve is not supported by ecdh. func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) { c := curveToECDH(k.Curve) if c == nil { return nil, errors.New("sm2: unsupported curve by ecdh") } size := (k.Curve.Params().N.BitLen() + 7) / 8 if k.D.BitLen() > size*8 { return nil, errors.New("sm2: invalid private key") } return c.NewPrivateKey(k.D.FillBytes(make([]byte, size))) } func curveToECDH(c elliptic.Curve) ecdh.Curve { switch c { case sm2ec.P256(): return ecdh.P256() default: return nil } } // randomPoint returns a random scalar and the corresponding point using the // procedure given in FIPS 186-4, Appendix B.5.2 (rejection sampling). func randomPoint(c *sm2Curve, rand io.Reader) (k *bigmod.Nat, p *_sm2ec.SM2P256Point, err error) { k = bigmod.NewNat() for { b := make([]byte, c.N.Size()) if _, err = io.ReadFull(rand, b); err != nil { return } // Mask off any excess bits to increase the chance of hitting a value in // (0, N). These are the most dangerous lines in the package and maybe in // the library: a single bit of bias in the selection of nonces would likely // lead to key recovery, but no tests would fail. Look but DO NOT TOUCH. if excess := len(b)*8 - c.N.BitLen(); excess > 0 { // Just to be safe, assert that this only happens for the one curve that // doesn't have a round number of bits. if excess != 0 { panic("sm2: internal error: unexpectedly masking off bits") } b[0] >>= excess } // FIPS 186-4 makes us check k <= N - 2 and then add one. // Checking 0 < k <= N - 1 is strictly equivalent. // None of this matters anyway because the chance of selecting // zero is cryptographically negligible. if _, err = k.SetBytes(b, c.N); err == nil && k.IsZero() == 0 { break } if testingOnlyRejectionSamplingLooped != nil { testingOnlyRejectionSamplingLooped() } } p, err = c.newPoint().ScalarBaseMult(k.Bytes(c.N)) return } // testingOnlyRejectionSamplingLooped is called when rejection sampling in // randomPoint rejects a candidate for being higher than the modulus. var testingOnlyRejectionSamplingLooped func() type sm2Curve struct { newPoint func() *_sm2ec.SM2P256Point curve elliptic.Curve N *bigmod.Modulus nMinus2 []byte } // pointFromAffine is used to convert the PublicKey to a sm2 Point. func (curve *sm2Curve) pointFromAffine(x, y *big.Int) (p *_sm2ec.SM2P256Point, err error) { bitSize := curve.curve.Params().BitSize // Reject values that would not get correctly encoded. if x.Sign() < 0 || y.Sign() < 0 { return p, errors.New("negative coordinate") } if x.BitLen() > bitSize || y.BitLen() > bitSize { return p, errors.New("overflowing coordinate") } // Encode the coordinates and let SetBytes reject invalid points. byteLen := (bitSize + 7) / 8 buf := make([]byte, 1+2*byteLen) buf[0] = 4 // uncompressed point x.FillBytes(buf[1 : 1+byteLen]) y.FillBytes(buf[1+byteLen : 1+2*byteLen]) return curve.newPoint().SetBytes(buf) } // pointToAffine is used to convert a sm2 Point to a PublicKey. func (curve *sm2Curve) pointToAffine(p *_sm2ec.SM2P256Point) (x, y *big.Int, err error) { out := p.Bytes() if len(out) == 1 && out[0] == 0 { // This is the encoding of the point at infinity. return nil, nil, errors.New("sm2: public key point is the infinity") } byteLen := (curve.curve.Params().BitSize + 7) / 8 x = new(big.Int).SetBytes(out[1 : 1+byteLen]) y = new(big.Int).SetBytes(out[1+byteLen:]) return x, y, nil } var p256Once sync.Once var _p256 *sm2Curve func p256() *sm2Curve { p256Once.Do(func() { _p256 = &sm2Curve{ newPoint: func() *_sm2ec.SM2P256Point { return _sm2ec.NewSM2P256Point() }, } precomputeParams(_p256, P256()) }) return _p256 } func precomputeParams(c *sm2Curve, curve elliptic.Curve) { params := curve.Params() c.curve = curve c.N, _ = bigmod.NewModulusFromBig(params.N) c.nMinus2 = new(big.Int).Sub(params.N, big.NewInt(2)).Bytes() }