package sm2 import ( "bufio" "bytes" "crypto" "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "encoding/hex" "io" "math/big" "testing" "github.com/emmansun/gmsm/sm3" ) func TestNewPrivateKey(t *testing.T) { c := p256() // test nil _, err := NewPrivateKey(nil) if err == nil || err.Error() != "sm2: invalid private key size" { t.Errorf("should throw sm2: invalid private key size") } // test all zero key := make([]byte, c.N.Size()) _, err = NewPrivateKey(key) if err == nil || err != errInvalidPrivateKey { t.Errorf("should throw errInvalidPrivateKey") } // test N-1 _, err = NewPrivateKey(c.nMinus1.Bytes(c.N)) if err == nil || err != errInvalidPrivateKey { t.Errorf("should throw errInvalidPrivateKey") } // test N _, err = NewPrivateKey(P256().Params().N.Bytes()) if err == nil || err != errInvalidPrivateKey { t.Errorf("should throw errInvalidPrivateKey") } // test 1 key[31] = 1 _, err = NewPrivateKey(key) if err != nil { t.Fatal(err) } // test N-2 _, err = NewPrivateKey(c.nMinus2) if err != nil { t.Error(err) } } func TestNewPrivateKeyFromInt(t *testing.T) { // test nil _, err := NewPrivateKeyFromInt(nil) if err == nil || err.Error() != "sm2: private key is nil" { t.Errorf("should throw sm2: private key is nil") } // test 1 _, err = NewPrivateKeyFromInt(big.NewInt(1)) if err != nil { t.Fatal(err) } // test N _, err = NewPrivateKeyFromInt(P256().Params().N) if err == nil || err != errInvalidPrivateKey { t.Errorf("should throw errInvalidPrivateKey") } // test N + 1 _, err = NewPrivateKeyFromInt(new(big.Int).Add(P256().Params().N, big.NewInt(1))) if err == nil || err != errInvalidPrivateKey { t.Errorf("should throw errInvalidPrivateKey") } c := p256() // test N - 1 _, err = NewPrivateKeyFromInt(new(big.Int).SetBytes(c.nMinus1.Bytes(c.N))) if err == nil || err != errInvalidPrivateKey { t.Errorf("should throw errInvalidPrivateKey") } } func TestNewPublicKey(t *testing.T) { // test nil _, err := NewPublicKey(nil) if err == nil || err.Error() != "sm2: invalid public key" { t.Errorf("should throw sm2: invalid public key") } // test without point format prefix byte keypoints, _ := hex.DecodeString("8356e642a40ebd18d29ba3532fbd9f3bbee8f027c3f6f39a5ba2f870369f9988981f5efe55d1c5cdf6c0ef2b070847a14f7fdf4272a8df09c442f3058af94ba1") _, err = NewPublicKey(keypoints) if err == nil || err.Error() != "sm2: invalid public key" { t.Errorf("should throw sm2: invalid public key") } // test correct point keypoints, _ = hex.DecodeString("048356e642a40ebd18d29ba3532fbd9f3bbee8f027c3f6f39a5ba2f870369f9988981f5efe55d1c5cdf6c0ef2b070847a14f7fdf4272a8df09c442f3058af94ba1") _, err = NewPublicKey(keypoints) if err != nil { t.Fatal(err) } // test point not on curve keypoints, _ = hex.DecodeString("048356e642a40ebd18d29ba3532fbd9f3bbee8f027c3f6f39a5ba2f870369f9988981f5efe55d1c5cdf6c0ef2b070847a14f7fdf4272a8df09c442f3058af94ba2") _, err = NewPublicKey(keypoints) if err == nil || err.Error() != "point not on SM2 P256 curve" { t.Errorf("should throw point not on SM2 P256 curve, got %v", err) } } func testRecoverPublicKeysFromSM2Signature(t *testing.T, priv *PrivateKey) { tests := []struct { name string plainText string }{ {"less than 32", "encryption standard"}, {"equals 32", "encryption standard encryption "}, {"long than 32", "encryption standard encryption standard"}, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { hashValue, err := CalculateSM2Hash(&priv.PublicKey, []byte(tt.plainText), nil) if err != nil { t.Fatalf("hash failed %v", err) } sig, err := priv.Sign(rand.Reader, hashValue, nil) if err != nil { t.Fatalf("sign failed %v", err) } pubs, err := RecoverPublicKeysFromSM2Signature(hashValue, sig) if err != nil { t.Fatalf("recover sig=%x, priv=%x, failed %v", sig, priv.D.Bytes(), err) } found := false for _, pub := range pubs { if !VerifyASN1(pub, hashValue, sig) { t.Errorf("failed to verify hash for sig=%x, priv=%x", sig, priv.D.Bytes()) } if pub.Equal(&priv.PublicKey) { found = true } } if !found { t.Errorf("recover failed, not found public key for sig=%x, priv=%x", sig, priv.D.Bytes()) } }) } } func TestRecoverPublicKeysFromSM2Signature(t *testing.T) { priv, _ := GenerateKey(rand.Reader) testRecoverPublicKeysFromSM2Signature(t, priv) keyInt := bigFromHex("d6833540d019e0438a5dd73b414f26ab43d8064b99671206944e284dbd969093") priv, _ = NewPrivateKeyFromInt(keyInt) testRecoverPublicKeysFromSM2Signature(t, priv) // failed case hashValue, _ := CalculateSM2Hash(&priv.PublicKey, []byte("encryption standard encryption "), nil) signature, _ := hex.DecodeString("3045022000cd0b56bf6be810032d28ff27d6f3468f1f1a09bcf8581f30a5de6692c85ea602210096ba29c086134af1be139dd572f2f2908f30e01fd0c28e06a687cbb0ff6e33ce") // verify signature with public key if !VerifyASN1(&priv.PublicKey, hashValue, signature) { t.Errorf("failed to verify hash for sig=%x, priv=%x", signature, priv.D.Bytes()) } pubs, err := RecoverPublicKeysFromSM2Signature(hashValue, signature) if err != nil { t.Fatalf("recover failed %v", err) } found := false for _, pub := range pubs { if !VerifyASN1(pub, hashValue, signature) { t.Errorf("failed to verify hash for sig=%x, priv=%x", signature, priv.D.Bytes()) } if pub.Equal(&priv.PublicKey) { found = true } } if !found { t.Errorf("recover failed, not found public key for sig=%x, priv=%x", signature, priv.D.Bytes()) } } // Check that signatures remain non-deterministic with a functional entropy source. func TestINDCCA(t *testing.T) { priv, err := GenerateKey(rand.Reader) if err != nil { t.Errorf("failed to generate key") } hashed := []byte("testing") r0, s0, err := Sign(rand.Reader, &priv.PrivateKey, hashed) if err != nil { t.Errorf("SM2: error signing: %s", err) return } r1, s1, err := Sign(rand.Reader, &priv.PrivateKey, hashed) if err != nil { t.Errorf("SM2: error signing: %s", err) return } if s0.Cmp(s1) == 0 { t.Error("SM2: two signatures of the same message produced the same result") } if r0.Cmp(r1) == 0 { t.Error("SM2: two signatures of the same message produced the same nonce") } } func TestNegativeInputs(t *testing.T) { key, err := GenerateKey(rand.Reader) if err != nil { t.Errorf("failed to generate key") } var hash [32]byte r := new(big.Int).SetInt64(1) r.Lsh(r, 550 /* larger than any supported curve */) r.Neg(r) if Verify(&key.PublicKey, hash[:], r, r) { t.Errorf("bogus signature accepted") } } func TestZeroHashSignature(t *testing.T) { zeroHash := make([]byte, 64) privKey, err := GenerateKey(rand.Reader) if err != nil { panic(err) } // Sign a hash consisting of all zeros. r, s, err := Sign(rand.Reader, &privKey.PrivateKey, zeroHash) if err != nil { panic(err) } // Confirm that it can be verified. if !Verify(&privKey.PublicKey, zeroHash, r, s) { t.Errorf("zero hash signature verify failed") } } func TestZeroSignature(t *testing.T) { privKey, err := GenerateKey(rand.Reader) if err != nil { panic(err) } if Verify(&privKey.PublicKey, make([]byte, 64), big.NewInt(0), big.NewInt(0)) { t.Error("Verify with r,s=0 succeeded") } } func TestNegtativeSignature(t *testing.T) { zeroHash := make([]byte, 64) privKey, err := GenerateKey(rand.Reader) if err != nil { panic(err) } r, s, err := Sign(rand.Reader, &privKey.PrivateKey, zeroHash) if err != nil { panic(err) } r = r.Neg(r) if Verify(&privKey.PublicKey, zeroHash, r, s) { t.Error("Verify with r=-r succeeded") } } func TestRPlusNSignature(t *testing.T) { zeroHash := make([]byte, 64) privKey, err := GenerateKey(rand.Reader) if err != nil { panic(err) } r, s, err := Sign(rand.Reader, &privKey.PrivateKey, zeroHash) if err != nil { panic(err) } r = r.Add(r, P256().Params().N) if Verify(&privKey.PublicKey, zeroHash, r, s) { t.Error("Verify with r=r+n succeeded") } } func TestRMinusNSignature(t *testing.T) { zeroHash := make([]byte, 64) privKey, err := GenerateKey(rand.Reader) if err != nil { panic(err) } r, s, err := Sign(rand.Reader, &privKey.PrivateKey, zeroHash) if err != nil { panic(err) } r = r.Sub(r, P256().Params().N) if Verify(&privKey.PublicKey, zeroHash, r, s) { t.Error("Verify with r=r-n succeeded") } } func TestEqual(t *testing.T) { private, _ := GenerateKey(rand.Reader) public := &private.PublicKey if !public.Equal(public) { t.Errorf("public key is not equal to itself: %q", public) } if !public.Equal(crypto.Signer(private).Public()) { t.Errorf("private.Public() is not Equal to public: %q", public) } if !private.Equal(private) { t.Errorf("private key is not equal to itself: %q", private.PrivateKey) } otherPriv, _ := GenerateKey(rand.Reader) otherPub := &otherPriv.PublicKey if public.Equal(otherPub) { t.Errorf("different public keys are Equal") } if private.Equal(otherPriv) { t.Errorf("different private keys are Equal") } } func TestPublicKeyToECDH(t *testing.T) { priv, _ := GenerateKey(rand.Reader) _, err := PublicKeyToECDH(&priv.PublicKey) if err != nil { t.Fatal(err) } p256, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader) _, err = PublicKeyToECDH(&p256.PublicKey) if err == nil { t.Fatal("should be error") } } func TestRandomPoint(t *testing.T) { c := p256() t.Cleanup(func() { testingOnlyRejectionSamplingLooped = nil }) var loopCount int testingOnlyRejectionSamplingLooped = func() { loopCount++ } // A sequence of all ones will generate 2^N-1, which should be rejected. // (Unless, for example, we are masking too many bits.) r := io.MultiReader(bytes.NewReader(bytes.Repeat([]byte{0xff}, 100)), rand.Reader) if k, p, err := randomPoint(c, r, false); err != nil { t.Fatal(err) } else if k.IsZero() == 1 { t.Error("k is zero") } else if p.Bytes()[0] != 4 { t.Error("p is infinity") } if loopCount == 0 { t.Error("overflow was not rejected") } loopCount = 0 // A sequence of all zeroes will generate zero, which should be rejected. r = io.MultiReader(bytes.NewReader(bytes.Repeat([]byte{0}, 100)), rand.Reader) if k, p, err := randomPoint(c, r, false); err != nil { t.Fatal(err) } else if k.IsZero() == 1 { t.Error("k is zero") } else if p.Bytes()[0] != 4 { t.Error("p is infinity") } if loopCount == 0 { t.Error("zero was not rejected") } } func TestPrivateKeyPlus1WithOrderMinus1(t *testing.T) { priv := new(PrivateKey) priv.D = new(big.Int).Sub(P256().Params().N, big.NewInt(1)) priv.Curve = P256() priv.PublicKey.X, priv.PublicKey.Y = P256().ScalarBaseMult(priv.D.Bytes()) _, err := priv.inverseOfPrivateKeyPlus1(p256()) if err == nil || err != errInvalidPrivateKey { t.Errorf("expected invalid private key error") } } func TestSignVerify(t *testing.T) { priv, _ := GenerateKey(rand.Reader) tests := []struct { name string plainText string }{ // TODO: Add test cases. {"less than 32", "encryption standard"}, {"equals 32", "encryption standard encryption "}, {"long than 32", "encryption standard encryption standard"}, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { hashed := sm3.Sum([]byte(tt.plainText)) signature, err := priv.Sign(rand.Reader, hashed[:], nil) if err != nil { t.Fatalf("sign failed %v", err) } result := VerifyASN1(&priv.PublicKey, hashed[:], signature) if !result { t.Fatal("verify failed") } hashed[0] ^= 0xff if VerifyASN1(&priv.PublicKey, hashed[:], signature) { t.Errorf("VerifyASN1 always works!") } }) } } func TestSM2Hasher(t *testing.T) { tobeHashed := []byte("hello world") keypoints, _ := hex.DecodeString("048356e642a40ebd18d29ba3532fbd9f3bbee8f027c3f6f39a5ba2f870369f9988981f5efe55d1c5cdf6c0ef2b070847a14f7fdf4272a8df09c442f3058af94ba1") pub, err := NewPublicKey(keypoints) if err != nil { t.Fatal(err) } md := sm3.New() hasher1, err := NewHash(pub) if err != nil { t.Fatal(err) } if hasher1.BlockSize() != md.BlockSize() { t.Errorf("expected %d, got %d", md.BlockSize(), hasher1.BlockSize()) } if hasher1.Size() != md.Size() { t.Errorf("expected %d, got %d", md.Size(), hasher1.Size()) } hasher1.Write(tobeHashed) hash1 := hasher1.Sum(nil) expected, err := CalculateSM2Hash(pub, tobeHashed, nil) if err != nil { t.Fatal(err) } if !bytes.Equal(hash1, expected) { t.Errorf("expected %x, got %x", expected, hash1) } hasher2, err := NewHashWithUserID(pub, []byte("john snow")) if err != nil { t.Fatal(err) } hasher2.Write(tobeHashed) hash2 := hasher2.Sum(nil) expected, err = CalculateSM2Hash(pub, tobeHashed, []byte("john snow")) if err != nil { t.Fatal(err) } if !bytes.Equal(hash2, expected) { t.Errorf("expected %x, got %x", expected, hash2) } } func TestSM2HasherReset(t *testing.T) { tobeHashed := []byte("hello world") keypoints, _ := hex.DecodeString("048356e642a40ebd18d29ba3532fbd9f3bbee8f027c3f6f39a5ba2f870369f9988981f5efe55d1c5cdf6c0ef2b070847a14f7fdf4272a8df09c442f3058af94ba1") pub, err := NewPublicKey(keypoints) if err != nil { t.Fatal(err) } hasher, err := NewHash(pub) if err != nil { t.Fatal(err) } hasher.Write(tobeHashed) hashBeforeReset := hasher.Sum(nil) hasher.Reset() hasher.Write(tobeHashed) hashAfterReset := hasher.Sum(nil) if !bytes.Equal(hashBeforeReset, hashAfterReset) { t.Errorf("expected %x, got %x", hashBeforeReset, hashAfterReset) } } func BenchmarkGenerateKey_SM2(b *testing.B) { r := bufio.NewReaderSize(rand.Reader, 1<<15) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { if _, err := GenerateKey(r); err != nil { b.Fatal(err) } } } func BenchmarkSign_SM2(b *testing.B) { r := bufio.NewReaderSize(rand.Reader, 1<<15) priv, err := GenerateKey(r) if err != nil { b.Fatal(err) } hashed := sm3.Sum([]byte("testing")) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { sig, err := SignASN1(rand.Reader, priv, hashed[:], nil) if err != nil { b.Fatal(err) } // Prevent the compiler from optimizing out the operation. hashed[0] = sig[0] } } func BenchmarkSign_SM2Specific(b *testing.B) { r := bufio.NewReaderSize(rand.Reader, 1<<15) priv, err := GenerateKey(r) if err != nil { b.Fatal(err) } hashed := []byte("testingtestingtestingtestingtestingtestingtestingtestingtestingtestingtestingtestingtestingtestingtestingtestingtestingtestingtestingtesting") b.RunParallel(func(p *testing.PB) { for p.Next() { _, err := priv.SignWithSM2(rand.Reader, nil, hashed) if err != nil { b.Fatal(err) } } }) } func BenchmarkVerify_SM2(b *testing.B) { rd := bufio.NewReaderSize(rand.Reader, 1<<15) priv, err := GenerateKey(rd) if err != nil { b.Fatal(err) } hashed := []byte("testing") r, s, err := Sign(rand.Reader, &priv.PrivateKey, hashed) if err != nil { b.Fatal(err) } b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { if !Verify(&priv.PublicKey, hashed, r, s) { b.Fatal("verify failed") } } }