// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Code generated by addchain. DO NOT EDIT. package fiat // Invert sets e = 1/x, and returns e. // // If x == 0, Invert returns e = 0. func (e *SM2P256Element) Invert(x *SM2P256Element) *SM2P256Element { // Inversion is implemented as exponentiation with exponent p − 2. // The sequence of 14 multiplications and 255 squarings is derived from the // following addition chain generated with github.com/mmcloughlin/addchain v0.4.0. // // _10 = 2*1 // _11 = 1 + _10 // _110 = 2*_11 // _111 = 1 + _110 // _111000 = _111 << 3 // _111111 = _111 + _111000 // _1111110 = 2*_111111 // _1111111 = 1 + _1111110 // x12 = _1111110 << 5 + _111111 // x24 = x12 << 12 + x12 // x31 = x24 << 7 + _1111111 // i39 = x31 << 2 // i68 = i39 << 29 // x62 = x31 + i68 // i71 = i68 << 2 // x64 = i39 + i71 + _11 // i265 = ((i71 << 32 + x64) << 64 + x64) << 94 // return (x62 + i265) << 2 + 1 // var z = new(SM2P256Element).Set(e) var t0 = new(SM2P256Element) var t1 = new(SM2P256Element) var t2 = new(SM2P256Element) z.Square(x) t0.Mul(x, z) z.Square(t0) z.Mul(x, z) t1.Square(z) for s := 1; s < 3; s++ { t1.Square(t1) } t1.Mul(z, t1) t2.Square(t1) z.Mul(x, t2) for s := 0; s < 5; s++ { t2.Square(t2) } t1.Mul(t1, t2) t2.Square(t1) for s := 1; s < 12; s++ { t2.Square(t2) } t1.Mul(t1, t2) for s := 0; s < 7; s++ { t1.Square(t1) } z.Mul(z, t1) t2.Square(z) for s := 1; s < 2; s++ { t2.Square(t2) } t1.Square(t2) for s := 1; s < 29; s++ { t1.Square(t1) } z.Mul(z, t1) for s := 0; s < 2; s++ { t1.Square(t1) } t2.Mul(t2, t1) t0.Mul(t0, t2) for s := 0; s < 32; s++ { t1.Square(t1) } t1.Mul(t0, t1) for s := 0; s < 64; s++ { t1.Square(t1) } t0.Mul(t0, t1) for s := 0; s < 94; s++ { t0.Square(t0) } z.Mul(z, t0) for s := 0; s < 2; s++ { z.Square(z) } z.Mul(x, z) return e.Set(z) }