// Copyright 2024 Sun Yimin. All rights reserved. // Use of this source code is governed by a MIT-style // license that can be found in the LICENSE file. //go:build (ppc64 || ppc64le) && !purego #include "textflag.h" DATA ·rcon+0x00(SB)/8, $0x0b0a09080f0e0d0c // byte swap per word DATA ·rcon+0x08(SB)/8, $0x0302010007060504 DATA ·rcon+0x10(SB)/8, $0x0001020310111213 // Permute for transpose matrix DATA ·rcon+0x18(SB)/8, $0x0405060714151617 DATA ·rcon+0x20(SB)/8, $0x08090a0b18191a1b DATA ·rcon+0x28(SB)/8, $0x0c0d0e0f1c1d1e1f DATA ·rcon+0x30(SB)/8, $0x0001020304050607 DATA ·rcon+0x38(SB)/8, $0x1011121314151617 DATA ·rcon+0x40(SB)/8, $0x08090a0b0c0d0e0f DATA ·rcon+0x48(SB)/8, $0x18191a1b1c1d1e1f DATA ·rcon+0x50(SB)/8, $0x0c0d0e0f08090a0b // reverse words DATA ·rcon+0x58(SB)/8, $0x0405060700010203 DATA ·rcon+0x60(SB)/8, $0x0F0F0F0F0F0F0F0F // nibble mask DATA ·rcon+0x68(SB)/8, $0x0F0F0F0F0F0F0F0F DATA ·rcon+0x70(SB)/8, $0x000D0A0704010E0B // inverse shift rows DATA ·rcon+0x78(SB)/8, $0x0805020F0C090603 DATA ·rcon+0x80(SB)/8, $0x691CA0D5B6C37F0A // affine transform matrix m1 low DATA ·rcon+0x88(SB)/8, $0x53269AEF8CF94530 DATA ·rcon+0x90(SB)/8, $0x009837AF6CF45BC3 // affine transform matrix m1 high DATA ·rcon+0x98(SB)/8, $0xAB339C04C75FF068 DATA ·rcon+0xa0(SB)/8, $0x616EF1FE050A959A // affine transform matrix m2 low DATA ·rcon+0xa8(SB)/8, $0xF5FA656A919E010E DATA ·rcon+0xb0(SB)/8, $0x00A4E044CD692D89 // affine transform matrix m2 high DATA ·rcon+0xb8(SB)/8, $0xA50145E168CC882C GLOBL ·rcon(SB), RODATA, $192 #define REVERSE_WORDS V19 #define M1L V20 #define M1H V21 #define M2L V22 #define M2H V23 #define V_FOUR V24 #define M0 V25 #define M1 V26 #define M2 V27 #define M3 V28 #define NIBBLE_MASK V29 #define INVERSE_SHIFT_ROWS V30 // For instruction emulation #define ESPERMW V31 // Endian swapping permute into BE #define TMP0 V10 #define TMP1 V11 #define TMP2 V12 #define TMP3 V13 #include "aesni_macros_ppc64x.s" #define SM4_TAO_L2(x, y, z) \ SM4_SBOX(x, y, z); \ ; \ //#################### 4 parallel L2 linear transforms ##################// VSPLTISW $13, z; \ VRLW x, z, y; \ // y = x <<< 13 VXOR x, y, x; \ VSPLTISW $10, z; \ VRLW y, z, y; \ // y = x <<< 23 VXOR x, y, x #define SM4_EXPANDKEY_ROUND(CK, x, y, z, t0, t1, t2, t3, target) \ VXOR t1, CK, x; \ VXOR t2, x, x; \ VXOR t3, x, x; \ SM4_TAO_L2(x, y, z); \ VXOR x, t0, t0; \ VSLDOI $4, target, t0, target // func expandKeyAsm(key *byte, ck, enc, dec *uint32, inst int) TEXT ·expandKeyAsm(SB),NOSPLIT,$0 // prepare/load constants VSPLTISW $4, V_FOUR; #ifdef NEEDS_PERMW MOVD $·rcon(SB), R4 LVX (R4), ESPERMW #endif MOVD $·rcon+0x50(SB), R4 LXVD2X (R4)(R0), REVERSE_WORDS MOVD $16, R3 LXVD2X (R4)(R3), NIBBLE_MASK MOVD $48, R3 LXVD2X (R4)(R3), M1L MOVD $64, R3 LXVD2X (R4)(R3), M1H MOVD $80, R3 LXVD2X (R4)(R3), M2L MOVD $96, R3 LXVD2X (R4)(R3), M2H MOVD key+0(FP), R3 MOVD ck+8(FP), R4 MOVD enc+16(FP), R5 MOVD dec+24(FP), R6 ADD $112, R6 // load fk MOVD $·fk+0(SB), R7 LXVW4X (R7), V4 // load key PPC64X_LXVW4X(R3, R0, V0) // xor key with fk VXOR V0, V4, V0 VSLDOI $4, V0, V0, V1 VSLDOI $4, V1, V1, V2 VSLDOI $4, V2, V2, V3 // prepare counter MOVD $8, R7 MOVD R7, CTR ksLoop: LXVW4X (R4), V4 SM4_EXPANDKEY_ROUND(V4, V7, V8, V9, V0, V1, V2, V3, V5) VSLDOI $4, V4, V4, V4 SM4_EXPANDKEY_ROUND(V4, V7, V8, V9, V1, V2, V3, V0, V5) VSLDOI $4, V4, V4, V4 SM4_EXPANDKEY_ROUND(V4, V7, V8, V9, V2, V3, V0, V1, V5) VSLDOI $4, V4, V4, V4 SM4_EXPANDKEY_ROUND(V4, V7, V8, V9, V3, V0, V1, V2, V5) STXVW4X V5, (R5) VPERM V5, V5, REVERSE_WORDS, V5 STXVW4X V5, (R6) ADD $16, R5 ADD $16, R4 ADD $-16, R6 BDNZ ksLoop RET // func encryptBlockAsm(xk *uint32, dst, src *byte, inst int) TEXT ·encryptBlockAsm(SB),NOSPLIT,$0 // prepare/load constants VSPLTISW $4, V_FOUR; #ifdef NEEDS_PERMW MOVD $·rcon(SB), R4 LVX (R4), ESPERMW #endif MOVD $·rcon+0x50(SB), R4 LXVD2X (R4)(R0), REVERSE_WORDS MOVD $16, R3 LXVD2X (R4)(R3), NIBBLE_MASK MOVD $48, R3 LXVD2X (R4)(R3), M1L MOVD $64, R3 LXVD2X (R4)(R3), M1H MOVD $80, R3 LXVD2X (R4)(R3), M2L MOVD $96, R3 LXVD2X (R4)(R3), M2H MOVD xk+0(FP), R3 MOVD dst+8(FP), R4 MOVD src+16(FP), R5 // load src PPC64X_LXVW4X(R5, R0, V0) VSLDOI $4, V0, V0, V1 VSLDOI $4, V1, V1, V2 VSLDOI $4, V2, V2, V3 // prepare counter MOVD $8, R7 MOVD R7, CTR encryptBlockLoop: // load xk LXVW4X (R3), V8 PROCESS_SINGLEBLOCK_4ROUND ADD $16, R3 BDNZ encryptBlockLoop VSLDOI $4, V3, V3, V3 VSLDOI $4, V3, V2, V2 VSLDOI $4, V2, V1, V1 VSLDOI $4, V1, V0, V0 PPC64X_STXVW4X(V0, R4, R0) RET // func encryptBlocksAsm(xk *uint32, dst, src []byte, inst int) TEXT ·encryptBlocksAsm(SB),NOSPLIT,$0 // prepare/load constants VSPLTISW $4, V_FOUR; #ifdef NEEDS_PERMW MOVD $·rcon(SB), R4 LVX (R4), ESPERMW #endif MOVD $·rcon+0x10(SB), R4 LOAD_CONSTS(R4, R3) MOVD xk+0(FP), R3 MOVD dst+8(FP), R4 MOVD src+32(FP), R5 MOVD src_len+40(FP), R6 CMP R6, $128 BEQ enc8blocks enc4blocks: // prepare counter MOVD $8, R7 MOVD R7, CTR MOVD $16, R7 MOVD $32, R8 MOVD $48, R9 PPC64X_LXVW4X(R5, R0, V0) PPC64X_LXVW4X(R5, R7, V1) PPC64X_LXVW4X(R5, R8, V2) PPC64X_LXVW4X(R5, R9, V3) PRE_TRANSPOSE_MATRIX(V0, V1, V2, V3) enc4blocksLoop: // load xk LXVW4X (R3), V8 PROCESS_4BLOCKS_4ROUND ADD $16, R3 BDNZ enc4blocksLoop TRANSPOSE_MATRIX(V0, V1, V2, V3) PPC64X_STXVW4X(V0, R4, R0) PPC64X_STXVW4X(V1, R4, R7) PPC64X_STXVW4X(V2, R4, R8) PPC64X_STXVW4X(V3, R4, R9) RET enc8blocks: // prepare counter MOVD $8, R7 MOVD R7, CTR MOVD $16, R7 MOVD $32, R8 MOVD $48, R9 MOVD $64, R10 MOVD $80, R11 MOVD $96, R12 MOVD $112, R14 PPC64X_LXVW4X(R5, R0, V0) PPC64X_LXVW4X(R5, R7, V1) PPC64X_LXVW4X(R5, R8, V2) PPC64X_LXVW4X(R5, R9, V3) PPC64X_LXVW4X(R5, R10, V4) PPC64X_LXVW4X(R5, R11, V5) PPC64X_LXVW4X(R5, R12, V6) PPC64X_LXVW4X(R5, R14, V7) PRE_TRANSPOSE_MATRIX(V0, V1, V2, V3) PRE_TRANSPOSE_MATRIX(V4, V5, V6, V7) enc8blocksLoop: LXVW4X (R3), V8 PROCESS_8BLOCKS_4ROUND ADD $16, R3 BDNZ enc8blocksLoop TRANSPOSE_MATRIX(V0, V1, V2, V3) TRANSPOSE_MATRIX(V4, V5, V6, V7) PPC64X_STXVW4X(V0, R4, R0) PPC64X_STXVW4X(V1, R4, R7) PPC64X_STXVW4X(V2, R4, R8) PPC64X_STXVW4X(V3, R4, R9) PPC64X_STXVW4X(V4, R4, R10) PPC64X_STXVW4X(V5, R4, R11) PPC64X_STXVW4X(V6, R4, R12) PPC64X_STXVW4X(V7, R4, R14) RET