// This file contains constant-time, 64-bit assembly implementation of // P256. The optimizations performed here are described in detail in: // S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with // 256-bit primes" // http://link.springer.com/article/10.1007%2Fs13389-014-0090-x // https://eprint.iacr.org/2013/816.pdf //go:build arm64 && !generic // +build arm64,!generic #include "textflag.h" #define res_ptr R0 #define a_ptr R1 #define b_ptr R2 #define acc0 R3 #define acc1 R4 #define acc2 R5 #define acc3 R6 #define acc4 R7 #define acc5 R8 #define acc6 R9 #define acc7 R10 #define t0 R11 #define t1 R12 #define t2 R13 #define t3 R14 #define const0 R15 #define const1 R16 #define hlp0 R17 #define hlp1 res_ptr #define x0 R19 #define x1 R20 #define x2 R21 #define x3 R22 #define y0 R23 #define y1 R24 #define y2 R25 #define y3 R26 #define const2 t2 #define const3 t3 DATA p256p<>+0x00(SB)/8, $0xffffffffffffffff DATA p256p<>+0x08(SB)/8, $0xffffffff00000000 DATA p256p<>+0x10(SB)/8, $0xffffffffffffffff DATA p256p<>+0x18(SB)/8, $0xfffffffeffffffff DATA p256ordK0<>+0x00(SB)/8, $0x327f9e8872350975 DATA p256ord<>+0x00(SB)/8, $0x53bbf40939d54123 DATA p256ord<>+0x08(SB)/8, $0x7203df6b21c6052b DATA p256ord<>+0x10(SB)/8, $0xffffffffffffffff DATA p256ord<>+0x18(SB)/8, $0xfffffffeffffffff DATA p256one<>+0x00(SB)/8, $0x0000000000000001 DATA p256one<>+0x08(SB)/8, $0x00000000ffffffff DATA p256one<>+0x10(SB)/8, $0x0000000000000000 DATA p256one<>+0x18(SB)/8, $0x0000000100000000 GLOBL p256p<>(SB), RODATA, $32 GLOBL p256ordK0<>(SB), RODATA, $8 GLOBL p256ord<>(SB), RODATA, $32 GLOBL p256one<>(SB), RODATA, $32 /* ---------------------------------------*/ // func p256LittleToBig(res []byte, in []uint64) TEXT ·p256LittleToBig(SB),NOSPLIT,$0 JMP ·p256BigToLittle(SB) /* ---------------------------------------*/ // func p256BigToLittle(res []uint64, in []byte) TEXT ·p256BigToLittle(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr MOVD in+24(FP), a_ptr LDP 0*16(a_ptr), (acc0, acc1) LDP 1*16(a_ptr), (acc2, acc3) REV acc0, acc0 REV acc1, acc1 REV acc2, acc2 REV acc3, acc3 STP (acc3, acc2), 0*16(res_ptr) STP (acc1, acc0), 1*16(res_ptr) RET /* ---------------------------------------*/ // func p256MovCond(res, a, b []uint64, cond int) // If cond == 0 res=b, else res=a TEXT ·p256MovCond(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr MOVD a+24(FP), a_ptr MOVD b+48(FP), b_ptr MOVD cond+72(FP), R3 CMP $0, R3 // Two remarks: // 1) Will want to revisit NEON, when support is better // 2) CSEL might not be constant time on all ARM processors LDP 0*16(a_ptr), (R4, R5) LDP 1*16(a_ptr), (R6, R7) LDP 2*16(a_ptr), (R8, R9) LDP 0*16(b_ptr), (R16, R17) LDP 1*16(b_ptr), (R19, R20) LDP 2*16(b_ptr), (R21, R22) CSEL EQ, R16, R4, R4 CSEL EQ, R17, R5, R5 CSEL EQ, R19, R6, R6 CSEL EQ, R20, R7, R7 CSEL EQ, R21, R8, R8 CSEL EQ, R22, R9, R9 STP (R4, R5), 0*16(res_ptr) STP (R6, R7), 1*16(res_ptr) STP (R8, R9), 2*16(res_ptr) LDP 3*16(a_ptr), (R4, R5) LDP 4*16(a_ptr), (R6, R7) LDP 5*16(a_ptr), (R8, R9) LDP 3*16(b_ptr), (R16, R17) LDP 4*16(b_ptr), (R19, R20) LDP 5*16(b_ptr), (R21, R22) CSEL EQ, R16, R4, R4 CSEL EQ, R17, R5, R5 CSEL EQ, R19, R6, R6 CSEL EQ, R20, R7, R7 CSEL EQ, R21, R8, R8 CSEL EQ, R22, R9, R9 STP (R4, R5), 3*16(res_ptr) STP (R6, R7), 4*16(res_ptr) STP (R8, R9), 5*16(res_ptr) RET /* ---------------------------------------*/ // func p256NegCond(val []uint64, cond int) TEXT ·p256NegCond(SB),NOSPLIT,$0 MOVD val+0(FP), a_ptr MOVD cond+24(FP), hlp0 MOVD a_ptr, res_ptr // acc = poly LDP p256p<>+0x00(SB), (acc0, acc1) LDP p256p<>+0x10(SB), (acc2, acc3) // Load the original value LDP 0*16(a_ptr), (t0, t1) LDP 1*16(a_ptr), (t2, t3) // Speculatively subtract SUBS t0, acc0 SBCS t1, acc1 SBCS t2, acc2 SBC t3, acc3 // If condition is 0, keep original value CMP $0, hlp0 CSEL EQ, t0, acc0, acc0 CSEL EQ, t1, acc1, acc1 CSEL EQ, t2, acc2, acc2 CSEL EQ, t3, acc3, acc3 // Store result STP (acc0, acc1), 0*16(res_ptr) STP (acc2, acc3), 1*16(res_ptr) RET /* ---------------------------------------*/ // func p256Sqr(res, in []uint64, n int) TEXT ·p256Sqr(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr MOVD in+24(FP), a_ptr MOVD n+48(FP), b_ptr LDP p256p<>+0x00(SB), (const0, const1) LDP p256p<>+0x10(SB), (const2, const3) LDP 0*16(a_ptr), (x0, x1) LDP 1*16(a_ptr), (x2, x3) sqrLoop: SUB $1, b_ptr CALL sm2P256SqrInternal<>(SB) MOVD y0, x0 MOVD y1, x1 MOVD y2, x2 MOVD y3, x3 CBNZ b_ptr, sqrLoop STP (y0, y1), 0*16(res_ptr) STP (y2, y3), 1*16(res_ptr) RET /* ---------------------------------------*/ // func p256Mul(res, in1, in2 []uint64) TEXT ·p256Mul(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr MOVD in1+24(FP), a_ptr MOVD in2+48(FP), b_ptr LDP p256p<>+0x00(SB), (const0, const1) LDP p256p<>+0x10(SB), (const2, const3) LDP 0*16(a_ptr), (x0, x1) LDP 1*16(a_ptr), (x2, x3) LDP 0*16(b_ptr), (y0, y1) LDP 1*16(b_ptr), (y2, y3) CALL sm2P256MulInternal<>(SB) STP (y0, y1), 0*16(res_ptr) STP (y2, y3), 1*16(res_ptr) RET /* ---------------------------------------*/ // func p256FromMont(res, in []uint64) TEXT ·p256FromMont(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr MOVD in+24(FP), a_ptr LDP p256p<>+0x00(SB), (const0, const1) LDP p256p<>+0x10(SB), (const2, const3) LDP 0*16(a_ptr), (acc0, acc1) LDP 1*16(a_ptr), (acc2, acc3) // Only reduce, no multiplications are needed // First reduction step LSL $32, acc0, y0 LSR $32, acc0, y1 ADDS acc0, acc1, acc1 ADCS $0, acc2, acc2 ADCS $0, acc3, acc3 ADC $0, acc0, acc0 SUBS y0, acc1 SBCS y1, acc2 SBCS y0, acc3 SBC y1, acc0 // Second reduction step LSL $32, acc1, y0 LSR $32, acc1, y1 ADDS acc1, acc2, acc2 ADCS $0, acc3, acc3 ADCS $0, acc0, acc0 ADC $0, acc1, acc1 SUBS y0, acc2 SBCS y1, acc3 SBCS y0, acc0 SBC y1, acc1 // Third reduction step LSL $32, acc2, y0 LSR $32, acc2, y1 ADDS acc2, acc3, acc3 ADCS $0, acc0, acc0 ADCS $0, acc1, acc1 ADC $0, acc2, acc2 SUBS y0, acc3 SBCS y1, acc0 SBCS y0, acc1 SBC y1, acc2 // Last reduction step LSL $32, acc3, y0 LSR $32, acc3, y1 ADDS acc3, acc0, acc0 ADCS $0, acc1, acc1 ADCS $0, acc2, acc2 ADC $0, acc3, acc3 SUBS y0, acc0 SBCS y1, acc1 SBCS y0, acc2 SBC y1, acc3 SUBS const0, acc0, t0 SBCS const1, acc1, t1 SBCS const2, acc2, t2 SBCS const3, acc3, t3 CSEL CS, t0, acc0, acc0 CSEL CS, t1, acc1, acc1 CSEL CS, t2, acc2, acc2 CSEL CS, t3, acc3, acc3 STP (acc0, acc1), 0*16(res_ptr) STP (acc2, acc3), 1*16(res_ptr) RET /* ---------------------------------------*/ // Constant time point access to arbitrary point table. // Indexed from 1 to 15, with -1 offset // (index 0 is implicitly point at infinity) // func p256Select(point, table []uint64, idx int) TEXT ·p256Select(SB),NOSPLIT,$0 MOVD idx+48(FP), const0 MOVD table+24(FP), b_ptr MOVD point+0(FP), res_ptr EOR x0, x0, x0 EOR x1, x1, x1 EOR x2, x2, x2 EOR x3, x3, x3 EOR y0, y0, y0 EOR y1, y1, y1 EOR y2, y2, y2 EOR y3, y3, y3 EOR t0, t0, t0 EOR t1, t1, t1 EOR t2, t2, t2 EOR t3, t3, t3 MOVD $0, const1 loop_select: ADD $1, const1 CMP const0, const1 LDP.P 16(b_ptr), (acc0, acc1) CSEL EQ, acc0, x0, x0 CSEL EQ, acc1, x1, x1 LDP.P 16(b_ptr), (acc2, acc3) CSEL EQ, acc2, x2, x2 CSEL EQ, acc3, x3, x3 LDP.P 16(b_ptr), (acc4, acc5) CSEL EQ, acc4, y0, y0 CSEL EQ, acc5, y1, y1 LDP.P 16(b_ptr), (acc6, acc7) CSEL EQ, acc6, y2, y2 CSEL EQ, acc7, y3, y3 LDP.P 16(b_ptr), (acc0, acc1) CSEL EQ, acc0, t0, t0 CSEL EQ, acc1, t1, t1 LDP.P 16(b_ptr), (acc2, acc3) CSEL EQ, acc2, t2, t2 CSEL EQ, acc3, t3, t3 CMP $16, const1 BNE loop_select STP (x0, x1), 0*16(res_ptr) STP (x2, x3), 1*16(res_ptr) STP (y0, y1), 2*16(res_ptr) STP (y2, y3), 3*16(res_ptr) STP (t0, t1), 4*16(res_ptr) STP (t2, t3), 5*16(res_ptr) RET /* ---------------------------------------*/ // Constant time point access to base point table. // func p256SelectBase(point *[12]uint64, table string, idx int) TEXT ·p256SelectBase(SB),NOSPLIT,$0 MOVD idx+24(FP), t0 MOVD table_base+8(FP), t1 MOVD point+0(FP), res_ptr EOR x0, x0, x0 EOR x1, x1, x1 EOR x2, x2, x2 EOR x3, x3, x3 EOR y0, y0, y0 EOR y1, y1, y1 EOR y2, y2, y2 EOR y3, y3, y3 MOVD $0, t2 loop_select: ADD $1, t2 CMP t0, t2 LDP.P 16(t1), (acc0, acc1) CSEL EQ, acc0, x0, x0 CSEL EQ, acc1, x1, x1 LDP.P 16(t1), (acc2, acc3) CSEL EQ, acc2, x2, x2 CSEL EQ, acc3, x3, x3 LDP.P 16(t1), (acc4, acc5) CSEL EQ, acc4, y0, y0 CSEL EQ, acc5, y1, y1 LDP.P 16(t1), (acc6, acc7) CSEL EQ, acc6, y2, y2 CSEL EQ, acc7, y3, y3 CMP $32, t2 BNE loop_select STP (x0, x1), 0*16(res_ptr) STP (x2, x3), 1*16(res_ptr) STP (y0, y1), 2*16(res_ptr) STP (y2, y3), 3*16(res_ptr) RET /* ---------------------------------------*/ // func p256OrdSqr(res, in []uint64, n int) TEXT ·p256OrdSqr(SB),NOSPLIT,$0 MOVD in+24(FP), a_ptr MOVD n+48(FP), b_ptr MOVD p256ordK0<>(SB), hlp1 LDP p256ord<>+0x00(SB), (const0, const1) LDP p256ord<>+0x10(SB), (const2, const3) LDP 0*16(a_ptr), (x0, x1) LDP 1*16(a_ptr), (x2, x3) ordSqrLoop: SUB $1, b_ptr // x[1:] * x[0] MUL x0, x1, acc1 UMULH x0, x1, acc2 MUL x0, x2, t0 ADDS t0, acc2, acc2 UMULH x0, x2, acc3 MUL x0, x3, t0 ADCS t0, acc3, acc3 UMULH x0, x3, acc4 ADC $0, acc4, acc4 // x[2:] * x[1] MUL x1, x2, t0 ADDS t0, acc3 UMULH x1, x2, t1 ADCS t1, acc4 ADC $0, ZR, acc5 MUL x1, x3, t0 ADDS t0, acc4 UMULH x1, x3, t1 ADC t1, acc5 // x[3] * x[2] MUL x2, x3, t0 ADDS t0, acc5 UMULH x2, x3, acc6 ADC $0, acc6 MOVD $0, acc7 // *2 ADDS acc1, acc1 ADCS acc2, acc2 ADCS acc3, acc3 ADCS acc4, acc4 ADCS acc5, acc5 ADCS acc6, acc6 ADC $0, acc7 // Missing products MUL x0, x0, acc0 UMULH x0, x0, t0 ADDS t0, acc1, acc1 MUL x1, x1, t0 ADCS t0, acc2, acc2 UMULH x1, x1, t1 ADCS t1, acc3, acc3 MUL x2, x2, t0 ADCS t0, acc4, acc4 UMULH x2, x2, t1 ADCS t1, acc5, acc5 MUL x3, x3, t0 ADCS t0, acc6, acc6 UMULH x3, x3, t1 ADC t1, acc7, acc7 // First reduction step MUL acc0, hlp1, hlp0 MUL const0, hlp1, t0 ADDS t0, acc0, acc0 UMULH const0, hlp0, t1 MUL const1, hlp0, t0 ADCS t0, acc1, acc1 UMULH const1, hlp0, y0 MUL const2, hlp0, t0 ADCS t0, acc2, acc2 UMULH const2, hlp0, acc0 MUL const3, hlp0, t0 ADCS t0, acc3, acc3 UMULH const3, hlp0, hlp0 ADC $0, hlp0 ADDS t1, acc1, acc1 ADCS y0, acc2, acc2 ADCS acc0, acc3, acc3 ADC $0, hlp0, acc0 // Second reduction step MUL acc1, hlp1, hlp0 MUL const0, hlp1, t0 ADDS t0, acc1, acc1 UMULH const0, hlp0, t1 MUL const1, hlp0, t0 ADCS t0, acc2, acc2 UMULH const1, hlp0, y0 MUL const2, hlp0, t0 ADCS t0, acc3, acc3 UMULH const2, hlp0, acc1 MUL const3, hlp0, t0 ADCS t0, acc0, acc0 UMULH const3, hlp0, hlp0 ADC $0, hlp0 ADDS t1, acc2, acc2 ADCS y0, acc3, acc3 ADCS acc1, acc0, acc0 ADC $0, hlp0, acc1 // Third reduction step MUL acc2, hlp1, hlp0 MUL const0, hlp1, t0 ADDS t0, acc2, acc2 UMULH const0, hlp0, t1 MUL const1, hlp0, t0 ADCS t0, acc3, acc3 UMULH const1, hlp0, y0 MUL const2, hlp0, t0 ADCS t0, acc0, acc0 UMULH const2, hlp0, acc2 MUL const3, hlp0, t0 ADCS t0, acc1, acc1 UMULH const3, hlp0, hlp0 ADC $0, hlp0 ADDS t1, acc3, acc3 ADCS y0, acc0, acc0 ADCS acc2, acc1, acc1 ADC $0, hlp0, acc2 // Last reduction step MUL acc3, hlp1, hlp0 MUL const0, hlp1, t0 ADDS t0, acc3, acc3 UMULH const0, hlp0, t1 MUL const1, hlp0, t0 ADCS t0, acc0, acc0 UMULH const1, hlp0, y0 MUL const2, hlp0, t0 ADCS t0, acc1, acc1 UMULH const2, hlp0, acc3 MUL const3, hlp0, t0 ADCS t0, acc2, acc2 UMULH const3, hlp0, hlp0 ADC $0, acc7 ADDS t1, acc0, acc0 ADCS y0, acc1, acc1 ADCS acc3, acc2, acc2 ADC $0, hlp0, acc3 ADDS acc4, acc0, acc0 ADCS acc5, acc1, acc1 ADCS acc6, acc2, acc2 ADCS acc7, acc3, acc3 ADC $0, ZR, acc4 SUBS const0, acc0, y0 SBCS const1, acc1, y1 SBCS const2, acc2, y2 SBCS const3, acc3, y3 SBCS $0, acc4, acc4 CSEL CS, y0, acc0, x0 CSEL CS, y1, acc1, x1 CSEL CS, y2, acc2, x2 CSEL CS, y3, acc3, x3 CBNZ b_ptr, ordSqrLoop MOVD res+0(FP), res_ptr STP (x0, x1), 0*16(res_ptr) STP (x2, x3), 1*16(res_ptr) RET /* ---------------------------------------*/ // func p256OrdMul(res, in1, in2 []uint64) TEXT ·p256OrdMul(SB),NOSPLIT,$0 MOVD in1+24(FP), a_ptr MOVD in2+48(FP), b_ptr MOVD p256ordK0<>(SB), hlp1 LDP p256ord<>+0x00(SB), (const0, const1) LDP p256ord<>+0x10(SB), (const2, const3) LDP 0*16(a_ptr), (x0, x1) LDP 1*16(a_ptr), (x2, x3) LDP 0*16(b_ptr), (y0, y1) LDP 1*16(b_ptr), (y2, y3) // y[0] * x MUL y0, x0, acc0 UMULH y0, x0, acc1 MUL y0, x1, t0 ADDS t0, acc1 UMULH y0, x1, acc2 MUL y0, x2, t0 ADCS t0, acc2 UMULH y0, x2, acc3 MUL y0, x3, t0 ADCS t0, acc3 UMULH y0, x3, acc4 ADC $0, acc4 // First reduction step MUL acc0, hlp1, hlp0 MUL const0, hlp1, t0 ADDS t0, acc0, acc0 UMULH const0, hlp0, t1 MUL const1, hlp0, t0 ADCS t0, acc1, acc1 UMULH const1, hlp0, y0 MUL const2, hlp0, t0 ADCS t0, acc2, acc2 UMULH const2, hlp0, acc0 MUL const3, hlp0, t0 ADCS t0, acc3, acc3 UMULH const3, hlp0, hlp0 ADC $0, acc4 ADDS t1, acc1, acc1 ADCS y0, acc2, acc2 ADCS acc0, acc3, acc3 ADC $0, hlp0, acc0 // y[1] * x MUL y1, x0, t0 ADDS t0, acc1 UMULH y1, x0, t1 MUL y1, x1, t0 ADCS t0, acc2 UMULH y1, x1, hlp0 MUL y1, x2, t0 ADCS t0, acc3 UMULH y1, x2, y0 MUL y1, x3, t0 ADCS t0, acc4 UMULH y1, x3, y1 ADC $0, ZR, acc5 ADDS t1, acc2 ADCS hlp0, acc3 ADCS y0, acc4 ADC y1, acc5 // Second reduction step MUL acc1, hlp1, hlp0 MUL const0, hlp1, t0 ADDS t0, acc1, acc1 UMULH const0, hlp0, t1 MUL const1, hlp0, t0 ADCS t0, acc2, acc2 UMULH const1, hlp0, y0 MUL const2, hlp0, t0 ADCS t0, acc3, acc3 UMULH const2, hlp0, acc1 MUL const3, hlp0, t0 ADCS t0, acc0, acc0 UMULH const3, hlp0, hlp0 ADC $0, acc5 ADDS t1, acc2, acc2 ADCS y0, acc3, acc3 ADCS acc1, acc0, acc0 ADC $0, hlp0, acc1 // y[2] * x MUL y2, x0, t0 ADDS t0, acc2 UMULH y2, x0, t1 MUL y2, x1, t0 ADCS t0, acc3 UMULH y2, x1, hlp0 MUL y2, x2, t0 ADCS t0, acc4 UMULH y2, x2, y0 MUL y2, x3, t0 ADCS t0, acc5 UMULH y2, x3, y1 ADC $0, ZR, acc6 ADDS t1, acc3 ADCS hlp0, acc4 ADCS y0, acc5 ADC y1, acc6 // Third reduction step MUL acc2, hlp1, hlp0 MUL const0, hlp1, t0 ADDS t0, acc2, acc2 UMULH const0, hlp0, t1 MUL const1, hlp0, t0 ADCS t0, acc3, acc3 UMULH const1, hlp0, y0 MUL const2, hlp0, t0 ADCS t0, acc0, acc0 UMULH const2, hlp0, acc2 MUL const3, hlp0, t0 ADCS t0, acc1, acc1 UMULH const3, hlp0, hlp0 ADC $0, acc6 ADDS t1, acc3, acc3 ADCS y0, acc0, acc0 ADCS acc2, acc1, acc1 ADC $0, hlp0, acc2 // y[3] * x MUL y3, x0, t0 ADDS t0, acc3 UMULH y3, x0, t1 MUL y3, x1, t0 ADCS t0, acc4 UMULH y3, x1, hlp0 MUL y3, x2, t0 ADCS t0, acc5 UMULH y3, x2, y0 MUL y3, x3, t0 ADCS t0, acc6 UMULH y3, x3, y1 ADC $0, ZR, acc7 ADDS t1, acc4 ADCS hlp0, acc5 ADCS y0, acc6 ADC y1, acc7 // Last reduction step MUL acc3, hlp1, hlp0 MUL const0, hlp1, t0 ADDS t0, acc3, acc3 UMULH const0, hlp0, t1 MUL const1, hlp0, t0 ADCS t0, acc0, acc0 UMULH const1, hlp0, y0 MUL const2, hlp0, t0 ADCS t0, acc1, acc1 UMULH const2, hlp0, acc3 MUL const3, hlp0, t0 ADCS t0, acc2, acc2 UMULH const3, hlp0, hlp0 ADC $0, acc7 ADDS t1, acc0, acc0 ADCS y0, acc1, acc1 ADCS acc3, acc2, acc2 ADC $0, hlp0, acc3 ADDS acc4, acc0, acc0 ADCS acc5, acc1, acc1 ADCS acc6, acc2, acc2 ADCS acc7, acc3, acc3 ADC $0, ZR, acc4 SUBS const0, acc0, t0 SBCS const1, acc1, t1 SBCS const2, acc2, t2 SBCS const3, acc3, t3 SBCS $0, acc4, acc4 CSEL CS, t0, acc0, acc0 CSEL CS, t1, acc1, acc1 CSEL CS, t2, acc2, acc2 CSEL CS, t3, acc3, acc3 MOVD res+0(FP), res_ptr STP (acc0, acc1), 0*16(res_ptr) STP (acc2, acc3), 1*16(res_ptr) RET /* ---------------------------------------*/ TEXT sm2P256Subinternal<>(SB),NOSPLIT,$0 SUBS x0, y0, acc0 SBCS x1, y1, acc1 SBCS x2, y2, acc2 SBCS x3, y3, acc3 SBC $0, ZR, t0 ADDS const0, acc0, acc4 ADCS const1, acc1, acc5 ADCS const2, acc2, acc6 ADC const3, acc3, acc7 ANDS $1, t0 CSEL EQ, acc0, acc4, x0 CSEL EQ, acc1, acc5, x1 CSEL EQ, acc2, acc6, x2 CSEL EQ, acc3, acc7, x3 RET /* ---------------------------------------*/ TEXT sm2P256SqrInternal<>(SB),NOSPLIT,$0 // x[1:] * x[0] MUL x0, x1, acc1 UMULH x0, x1, acc2 MUL x0, x2, t0 ADDS t0, acc2, acc2 UMULH x0, x2, acc3 MUL x0, x3, t0 ADCS t0, acc3, acc3 UMULH x0, x3, acc4 ADC $0, acc4, acc4 // x[2:] * x[1] MUL x1, x2, t0 ADDS t0, acc3 UMULH x1, x2, t1 ADCS t1, acc4 ADC $0, ZR, acc5 MUL x1, x3, t0 ADDS t0, acc4 UMULH x1, x3, t1 ADC t1, acc5 // x[3] * x[2] MUL x2, x3, t0 ADDS t0, acc5 UMULH x2, x3, acc6 ADC $0, acc6 MOVD $0, acc7 // *2 ADDS acc1, acc1 ADCS acc2, acc2 ADCS acc3, acc3 ADCS acc4, acc4 ADCS acc5, acc5 ADCS acc6, acc6 ADC $0, acc7 // Missing products MUL x0, x0, acc0 UMULH x0, x0, t0 ADDS t0, acc1, acc1 MUL x1, x1, t0 ADCS t0, acc2, acc2 UMULH x1, x1, t1 ADCS t1, acc3, acc3 MUL x2, x2, t0 ADCS t0, acc4, acc4 UMULH x2, x2, t1 ADCS t1, acc5, acc5 MUL x3, x3, t0 ADCS t0, acc6, acc6 UMULH x3, x3, t1 ADCS t1, acc7, acc7 // First reduction step LSL $32, acc0, y0 LSR $32, acc0, y1 ADDS acc0, acc1, acc1 ADCS $0, acc2, acc2 ADCS $0, acc3, acc3 ADC $0, acc0, acc0 SUBS y0, acc1 SBCS y1, acc2 SBCS y0, acc3 SBC y1, acc0 // Second reduction step LSL $32, acc1, y0 LSR $32, acc1, y1 ADDS acc1, acc2, acc2 ADCS $0, acc3, acc3 ADCS $0, acc0, acc0 ADC $0, acc1, acc1 SUBS y0, acc2 SBCS y1, acc3 SBCS y0, acc0 SBC y1, acc1 // Third reduction step LSL $32, acc2, y0 LSR $32, acc2, y1 ADDS acc2, acc3, acc3 ADCS $0, acc0, acc0 ADCS $0, acc1, acc1 ADC $0, acc2, acc2 SUBS y0, acc3 SBCS y1, acc0 SBCS y0, acc1 SBC y1, acc2 // Last reduction step LSL $32, acc3, y0 LSR $32, acc3, y1 ADDS acc3, acc0, acc0 ADCS $0, acc1, acc1 ADCS $0, acc2, acc2 ADC $0, acc3, acc3 SUBS y0, acc0 SBCS y1, acc1 SBCS y0, acc2 SBC y1, acc3 // Add bits [511:256] of the sqr result ADDS acc4, acc0, acc0 ADCS acc5, acc1, acc1 ADCS acc6, acc2, acc2 ADCS acc7, acc3, acc3 ADC $0, ZR, acc4 SUBS const0, acc0, t0 SBCS const1, acc1, t1 SBCS const2, acc2, acc5 SBCS const3, acc3, acc6 SBCS $0, acc4, acc4 CSEL CS, t0, acc0, y0 CSEL CS, t1, acc1, y1 CSEL CS, acc5, acc2, y2 CSEL CS, acc6, acc3, y3 RET /* ---------------------------------------*/ TEXT sm2P256MulInternal<>(SB),NOSPLIT,$0 // y[0] * x MUL y0, x0, acc0 UMULH y0, x0, acc1 MUL y0, x1, t0 ADDS t0, acc1 UMULH y0, x1, acc2 MUL y0, x2, t0 ADCS t0, acc2 UMULH y0, x2, acc3 MUL y0, x3, t0 ADCS t0, acc3 UMULH y0, x3, acc4 ADC $0, acc4 // First reduction step LSL $32, acc0, t0 LSR $32, acc0, t1 ADDS acc0, acc1, acc1 ADCS $0, acc2, acc2 ADCS $0, acc3, acc3 ADC $0, acc0, acc0 SUBS t0, acc1 SBCS t1, acc2 SBCS t0, acc3 SBC t1, acc0 // y[1] * x MUL y1, x0, t0 ADDS t0, acc1 UMULH y1, x0, t1 MUL y1, x1, t0 ADCS t0, acc2 UMULH y1, x1, y0 MUL y1, x2, t0 ADCS t0, acc3 UMULH y1, x2, acc6 MUL y1, x3, t0 ADCS t0, acc4 UMULH y1, x3, hlp0 ADC $0, ZR, acc5 ADDS t1, acc2 ADCS y0, acc3 ADCS acc6, acc4 ADC hlp0, acc5 // Second reduction step LSL $32, acc1, t0 LSR $32, acc1, t1 ADDS acc1, acc2, acc2 ADCS $0, acc3, acc3 ADCS $0, acc0, acc0 ADC $0, acc1, acc1 SUBS t0, acc2 SBCS t1, acc3 SBCS t0, acc0 SBC t1, acc1 // y[2] * x MUL y2, x0, t0 ADDS t0, acc2 UMULH y2, x0, t1 MUL y2, x1, t0 ADCS t0, acc3 UMULH y2, x1, y0 MUL y2, x2, t0 ADCS t0, acc4 UMULH y2, x2, y1 MUL y2, x3, t0 ADCS t0, acc5 UMULH y2, x3, hlp0 ADC $0, ZR, acc6 ADDS t1, acc3 ADCS y0, acc4 ADCS y1, acc5 ADC hlp0, acc6 // Third reduction step LSL $32, acc2, t0 LSR $32, acc2, t1 ADDS acc2, acc3, acc3 ADCS $0, acc0, acc0 ADCS $0, acc1, acc1 ADC $0, acc2, acc2 SUBS t0, acc3 SBCS t1, acc0 SBCS t0, acc1 SBC t1, acc2 // y[3] * x MUL y3, x0, t0 ADDS t0, acc3 UMULH y3, x0, t1 MUL y3, x1, t0 ADCS t0, acc4 UMULH y3, x1, y0 MUL y3, x2, t0 ADCS t0, acc5 UMULH y3, x2, y1 MUL y3, x3, t0 ADCS t0, acc6 UMULH y3, x3, hlp0 ADC $0, ZR, acc7 ADDS t1, acc4 ADCS y0, acc5 ADCS y1, acc6 ADC hlp0, acc7 // Last reduction step LSL $32, acc3, t0 LSR $32, acc3, t1 ADDS acc3, acc0, acc0 ADCS $0, acc1, acc1 ADCS $0, acc2, acc2 ADC $0, acc3, acc3 SUBS t0, acc0 SBCS t1, acc1 SBCS t0, acc2 SBC t1, acc3 // Add bits [511:256] of the mul result ADDS acc4, acc0, acc0 ADCS acc5, acc1, acc1 ADCS acc6, acc2, acc2 ADCS acc7, acc3, acc3 ADC $0, ZR, acc4 SUBS const0, acc0, t0 SBCS const1, acc1, t1 SBCS const2, acc2, acc5 SBCS const3, acc3, acc6 SBCS $0, acc4, acc4 CSEL CS, t0, acc0, y0 CSEL CS, t1, acc1, y1 CSEL CS, acc5, acc2, y2 CSEL CS, acc6, acc3, y3 RET /* ---------------------------------------*/ #define p256MulBy2Inline \ ADDS y0, y0, x0; \ ADCS y1, y1, x1; \ ADCS y2, y2, x2; \ ADCS y3, y3, x3; \ ADC $0, ZR, hlp0; \ SUBS const0, x0, t0; \ SBCS const1, x1, t1;\ SBCS const2, x2, acc5; \ SBCS const3, x3, acc6;\ SBCS $0, hlp0, hlp0;\ CSEL CC, x0, t0, x0;\ CSEL CC, x1, t1, x1;\ CSEL CC, x2, acc5, x2;\ CSEL CC, x3, acc6, x3; /* ---------------------------------------*/ #define x1in(off) (off)(a_ptr) #define y1in(off) (off + 32)(a_ptr) #define z1in(off) (off + 64)(a_ptr) #define x2in(off) (off)(b_ptr) #define z2in(off) (off + 64)(b_ptr) #define x3out(off) (off)(res_ptr) #define y3out(off) (off + 32)(res_ptr) #define z3out(off) (off + 64)(res_ptr) #define LDx(src) LDP src(0), (x0, x1); LDP src(16), (x2, x3) #define LDy(src) LDP src(0), (y0, y1); LDP src(16), (y2, y3) #define STx(src) STP (x0, x1), src(0); STP (x2, x3), src(16) #define STy(src) STP (y0, y1), src(0); STP (y2, y3), src(16) /* ---------------------------------------*/ #define y2in(off) (32*0 + 8 + off)(RSP) #define s2(off) (32*1 + 8 + off)(RSP) #define z1sqr(off) (32*2 + 8 + off)(RSP) #define h(off) (32*3 + 8 + off)(RSP) #define r(off) (32*4 + 8 + off)(RSP) #define hsqr(off) (32*5 + 8 + off)(RSP) #define rsqr(off) (32*6 + 8 + off)(RSP) #define hcub(off) (32*7 + 8 + off)(RSP) #define z2sqr(off) (32*8 + 8 + off)(RSP) #define s1(off) (32*9 + 8 + off)(RSP) #define u1(off) (32*10 + 8 + off)(RSP) #define u2(off) (32*11 + 8 + off)(RSP) // func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int) TEXT ·p256PointAddAffineAsm(SB),0,$264-96 MOVD in1+24(FP), a_ptr MOVD in2+48(FP), b_ptr MOVD sign+72(FP), hlp0 MOVD sel+80(FP), hlp1 MOVD zero+88(FP), t1 MOVD $1, t0 CMP $0, t1 CSEL EQ, ZR, t0, t1 CMP $0, hlp1 CSEL EQ, ZR, t0, hlp1 LDP p256p<>+0x00(SB), (const0, const1) LDP p256p<>+0x10(SB), (const2, const3) EOR t1<<1, hlp1 // Negate y2in based on sign LDP 2*16(b_ptr), (y0, y1) LDP 3*16(b_ptr), (y2, y3) SUBS y0, const0, acc0 SBCS y1, const1, acc1 SBCS y2, const2, acc2 SBCS y3, const3, acc3 SBC $0, ZR, t0 ADDS const0, acc0, acc4 ADCS const1, acc1, acc5 ADCS const2, acc2, acc6 ADCS const3, acc3, acc7 ADC $0, t0, t0 CMP $0, t0 CSEL EQ, acc4, acc0, acc0 CSEL EQ, acc5, acc1, acc1 CSEL EQ, acc6, acc2, acc2 CSEL EQ, acc7, acc3, acc3 // If condition is 0, keep original value CMP $0, hlp0 CSEL EQ, y0, acc0, y0 CSEL EQ, y1, acc1, y1 CSEL EQ, y2, acc2, y2 CSEL EQ, y3, acc3, y3 // Store result STy(y2in) // Begin point add LDx(z1in) CALL sm2P256SqrInternal<>(SB) // z1ˆ2 STy(z1sqr) LDx(x2in) CALL sm2P256MulInternal<>(SB) // x2 * z1ˆ2 LDx(x1in) CALL sm2P256Subinternal<>(SB) // h = u2 - u1 STx(h) LDy(z1in) CALL sm2P256MulInternal<>(SB) // z3 = h * z1 LDP 4*16(a_ptr), (acc0, acc1)// iff select[0] == 0, z3 = z1 LDP 5*16(a_ptr), (acc2, acc3) ANDS $1, hlp1, ZR CSEL EQ, acc0, y0, y0 CSEL EQ, acc1, y1, y1 CSEL EQ, acc2, y2, y2 CSEL EQ, acc3, y3, y3 LDP p256one<>+0x00(SB), (acc0, acc1) LDP p256one<>+0x10(SB), (acc2, acc3) ANDS $2, hlp1, ZR // iff select[1] == 0, z3 = 1 CSEL EQ, acc0, y0, y0 CSEL EQ, acc1, y1, y1 CSEL EQ, acc2, y2, y2 CSEL EQ, acc3, y3, y3 LDx(z1in) MOVD res+0(FP), t0 STP (y0, y1), 4*16(t0) STP (y2, y3), 5*16(t0) LDy(z1sqr) CALL sm2P256MulInternal<>(SB) // z1 ^ 3 LDx(y2in) CALL sm2P256MulInternal<>(SB) // s2 = y2 * z1ˆ3 STy(s2) LDx(y1in) CALL sm2P256Subinternal<>(SB) // r = s2 - s1 STx(r) CALL sm2P256SqrInternal<>(SB) // rsqr = rˆ2 STy (rsqr) LDx(h) CALL sm2P256SqrInternal<>(SB) // hsqr = hˆ2 STy(hsqr) CALL sm2P256MulInternal<>(SB) // hcub = hˆ3 STy(hcub) LDx(y1in) CALL sm2P256MulInternal<>(SB) // y1 * hˆ3 STy(s2) LDP hsqr(0*8), (x0, x1) LDP hsqr(2*8), (x2, x3) LDP 0*16(a_ptr), (y0, y1) LDP 1*16(a_ptr), (y2, y3) CALL sm2P256MulInternal<>(SB) // u1 * hˆ2 STP (y0, y1), h(0*8) STP (y2, y3), h(2*8) p256MulBy2Inline // u1 * hˆ2 * 2, inline LDy(rsqr) CALL sm2P256Subinternal<>(SB) // rˆ2 - u1 * hˆ2 * 2 MOVD x0, y0 MOVD x1, y1 MOVD x2, y2 MOVD x3, y3 LDx(hcub) CALL sm2P256Subinternal<>(SB) LDP 0*16(a_ptr), (acc0, acc1) LDP 1*16(a_ptr), (acc2, acc3) ANDS $1, hlp1, ZR // iff select[0] == 0, x3 = x1 CSEL EQ, acc0, x0, x0 CSEL EQ, acc1, x1, x1 CSEL EQ, acc2, x2, x2 CSEL EQ, acc3, x3, x3 LDP 0*16(b_ptr), (acc0, acc1) LDP 1*16(b_ptr), (acc2, acc3) ANDS $2, hlp1, ZR // iff select[1] == 0, x3 = x2 CSEL EQ, acc0, x0, x0 CSEL EQ, acc1, x1, x1 CSEL EQ, acc2, x2, x2 CSEL EQ, acc3, x3, x3 MOVD res+0(FP), t0 STP (x0, x1), 0*16(t0) STP (x2, x3), 1*16(t0) LDP h(0*8), (y0, y1) LDP h(2*8), (y2, y3) CALL sm2P256Subinternal<>(SB) LDP r(0*8), (y0, y1) LDP r(2*8), (y2, y3) CALL sm2P256MulInternal<>(SB) LDP s2(0*8), (x0, x1) LDP s2(2*8), (x2, x3) CALL sm2P256Subinternal<>(SB) LDP 2*16(a_ptr), (acc0, acc1) LDP 3*16(a_ptr), (acc2, acc3) ANDS $1, hlp1, ZR // iff select[0] == 0, y3 = y1 CSEL EQ, acc0, x0, x0 CSEL EQ, acc1, x1, x1 CSEL EQ, acc2, x2, x2 CSEL EQ, acc3, x3, x3 LDP y2in(0*8), (acc0, acc1) LDP y2in(2*8), (acc2, acc3) ANDS $2, hlp1, ZR // iff select[1] == 0, y3 = y2 CSEL EQ, acc0, x0, x0 CSEL EQ, acc1, x1, x1 CSEL EQ, acc2, x2, x2 CSEL EQ, acc3, x3, x3 MOVD res+0(FP), t0 STP (x0, x1), 2*16(t0) STP (x2, x3), 3*16(t0) RET #define p256AddInline \ ADDS y0, x0, x0; \ ADCS y1, x1, x1; \ ADCS y2, x2, x2; \ ADCS y3, x3, x3; \ ADC $0, ZR, hlp0; \ SUBS const0, x0, t0; \ SBCS const1, x1, t1;\ SBCS const2, x2, acc5; \ SBCS const3, x3, acc6;\ SBCS $0, hlp0, hlp0;\ CSEL CC, x0, t0, x0;\ CSEL CC, x1, t1, x1;\ CSEL CC, x2, acc5, x2;\ CSEL CC, x3, acc6, x3; #define s(off) (32*0 + 8 + off)(RSP) #define m(off) (32*1 + 8 + off)(RSP) #define zsqr(off) (32*2 + 8 + off)(RSP) #define tmp(off) (32*3 + 8 + off)(RSP) //func p256PointDoubleAsm(res, in []uint64) TEXT ·p256PointDoubleAsm(SB),NOSPLIT,$136-48 MOVD res+0(FP), res_ptr MOVD in+24(FP), a_ptr LDP p256p<>+0x00(SB), (const0, const1) LDP p256p<>+0x10(SB), (const2, const3) // Begin point double LDP 4*16(a_ptr), (x0, x1) LDP 5*16(a_ptr), (x2, x3) CALL sm2P256SqrInternal<>(SB) STP (y0, y1), zsqr(0*8) STP (y2, y3), zsqr(2*8) LDP 0*16(a_ptr), (x0, x1) LDP 1*16(a_ptr), (x2, x3) p256AddInline STx(m) LDx(z1in) LDy(y1in) CALL sm2P256MulInternal<>(SB) p256MulBy2Inline STx(z3out) LDy(x1in) LDx(zsqr) CALL sm2P256Subinternal<>(SB) LDy(m) CALL sm2P256MulInternal<>(SB) // Multiply by 3 p256MulBy2Inline p256AddInline STx(m) LDy(y1in) p256MulBy2Inline CALL sm2P256SqrInternal<>(SB) STy(s) MOVD y0, x0 MOVD y1, x1 MOVD y2, x2 MOVD y3, x3 CALL sm2P256SqrInternal<>(SB) // Divide by 2 ADDS const0, y0, t0 ADCS const1, y1, t1 ADCS const2, y2, acc5 ADCS const3, y3, acc6 ADC $0, ZR, hlp0 ANDS $1, y0, ZR CSEL EQ, y0, t0, t0 CSEL EQ, y1, t1, t1 CSEL EQ, y2, acc5, acc5 CSEL EQ, y3, acc6, acc6 AND y0, hlp0, hlp0 EXTR $1, t0, t1, y0 EXTR $1, t1, acc5, y1 EXTR $1, acc5, acc6, y2 EXTR $1, acc6, hlp0, y3 STy(y3out) LDx(x1in) LDy(s) CALL sm2P256MulInternal<>(SB) STy(s) p256MulBy2Inline STx(tmp) LDx(m) CALL sm2P256SqrInternal<>(SB) LDx(tmp) CALL sm2P256Subinternal<>(SB) STx(x3out) LDy(s) CALL sm2P256Subinternal<>(SB) LDy(m) CALL sm2P256MulInternal<>(SB) LDx(y3out) CALL sm2P256Subinternal<>(SB) STx(y3out) RET /* ---------------------------------------*/ #undef y2in #undef x3out #undef y3out #undef z3out #define y2in(off) (off + 32)(b_ptr) #define x3out(off) (off)(b_ptr) #define y3out(off) (off + 32)(b_ptr) #define z3out(off) (off + 64)(b_ptr) //func p256PointAddAsm(res, in1, in2 []uint64) int TEXT ·p256PointAddAsm(SB),0,$392-80 // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl // Move input to stack in order to free registers MOVD in1+24(FP), a_ptr MOVD in2+48(FP), b_ptr LDP p256p<>+0x00(SB), (const0, const1) LDP p256p<>+0x10(SB), (const2, const3) // Begin point add LDx(z2in) CALL sm2P256SqrInternal<>(SB) // z2^2 STy(z2sqr) CALL sm2P256MulInternal<>(SB) // z2^3 LDx(y1in) CALL sm2P256MulInternal<>(SB) // s1 = z2ˆ3*y1 STy(s1) LDx(z1in) CALL sm2P256SqrInternal<>(SB) // z1^2 STy(z1sqr) CALL sm2P256MulInternal<>(SB) // z1^3 LDx(y2in) CALL sm2P256MulInternal<>(SB) // s2 = z1ˆ3*y2 LDx(s1) CALL sm2P256Subinternal<>(SB) // r = s2 - s1 STx(r) MOVD $1, acc1 ORR x0, x1, acc2 // Check if zero mod p256 ORR x2, x3, acc3 ORR acc3, acc2, acc2 CMP $0, acc2 CSEL EQ, acc1, ZR, hlp1 EOR const0, x0, acc2 EOR const1, x1, acc3 EOR const2, x2, acc4 EOR const3, x3, acc5 ORR acc2, acc3, acc2 ORR acc4, acc5, acc3 ORR acc3, acc2, acc2 CMP $0, acc2 CSEL EQ, acc1, hlp1, hlp1 LDx(z2sqr) LDy(x1in) CALL sm2P256MulInternal<>(SB) // u1 = x1 * z2ˆ2 STy(u1) LDx(z1sqr) LDy(x2in) CALL sm2P256MulInternal<>(SB) // u2 = x2 * z1ˆ2 STy(u2) LDx(u1) CALL sm2P256Subinternal<>(SB) // h = u2 - u1 STx(h) MOVD $1, acc1 ORR x0, x1, acc2 // Check if zero mod p256 ORR x2, x3, acc3 ORR acc3, acc2, acc2 CMP $0, acc2 CSEL EQ, acc1, ZR, hlp0 EOR const0, x0, acc2 EOR const1, x1, acc3 EOR const2, x2, acc4 EOR const3, x3, acc5 ORR acc2, acc3, acc2 ORR acc4, acc5, acc3 ORR acc3, acc2, acc2 CMP $0, acc2 CSEL EQ, acc1, hlp0, hlp0 AND hlp0, hlp1, hlp1 LDx(r) CALL sm2P256SqrInternal<>(SB) // rsqr = rˆ2 STy(rsqr) LDx(h) CALL sm2P256SqrInternal<>(SB) // hsqr = hˆ2 STy(hsqr) LDx(h) CALL sm2P256MulInternal<>(SB) // hcub = hˆ3 STy(hcub) LDx(s1) CALL sm2P256MulInternal<>(SB) STy(s2) LDx(z1in) LDy(z2in) CALL sm2P256MulInternal<>(SB) // z1 * z2 LDx(h) CALL sm2P256MulInternal<>(SB) // z1 * z2 * h MOVD res+0(FP), b_ptr STy(z3out) LDx(hsqr) LDy(u1) CALL sm2P256MulInternal<>(SB) // hˆ2 * u1 STy(u2) p256MulBy2Inline // u1 * hˆ2 * 2, inline LDy(rsqr) CALL sm2P256Subinternal<>(SB) // rˆ2 - u1 * hˆ2 * 2 MOVD x0, y0 MOVD x1, y1 MOVD x2, y2 MOVD x3, y3 LDx(hcub) CALL sm2P256Subinternal<>(SB) STx(x3out) LDy(u2) CALL sm2P256Subinternal<>(SB) LDy(r) CALL sm2P256MulInternal<>(SB) LDx(s2) CALL sm2P256Subinternal<>(SB) STx(y3out) MOVD hlp1, R0 MOVD R0, ret+72(FP) RET