package bn256 import ( "crypto/subtle" "errors" "io" "math/big" ) // GT is an abstract cyclic group. The zero value is suitable for use as the // output of an operation, but cannot be used as an input. type GT struct { p *gfP12 } // RandomGT returns x and e(g₁, g₂)ˣ where x is a random, non-zero number read // from r. func RandomGT(r io.Reader) (*big.Int, *GT, error) { k, err := randomK(r) if err != nil { return nil, nil, err } return k, new(GT).ScalarBaseMult(k), nil } // Pair calculates an R-Ate pairing. func Pair(g1 *G1, g2 *G2) *GT { return >{pairing(g2.p, g1.p)} } // Miller applies Miller's algorithm, which is a bilinear function from the // source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1, // g2). func Miller(g1 *G1, g2 *G2) *GT { return >{miller(g2.p, g1.p)} } func (g *GT) String() string { return "sm9.GT" + g.p.String() } // ScalarBaseMult sets e to g*k where g is the generator of the group and then // returns out. func (e *GT) ScalarBaseMult(k *big.Int) *GT { if e.p == nil { e.p = &gfP12{} } e.p.Exp(gfP12Gen, k) return e } // ScalarMult sets e to a*k and then returns e. func (e *GT) ScalarMult(a *GT, k *big.Int) *GT { if e.p == nil { e.p = &gfP12{} } e.p.Exp(a.p, k) return e } // Add sets e to a+b and then returns e. func (e *GT) Add(a, b *GT) *GT { if e.p == nil { e.p = &gfP12{} } e.p.Mul(a.p, b.p) return e } // Set sets e to a and then returns e. func (e *GT) Set(a *GT) *GT { if e.p == nil { e.p = &gfP12{} } e.p.Set(a.p) return e } // Set sets e to one and then returns e. func (e *GT) SetOne() *GT { if e.p == nil { e.p = &gfP12{} } e.p.SetOne() return e } // Finalize is a linear function from F_p^12 to GT. func (e *GT) Finalize() *GT { ret := finalExponentiation(e.p) e.p.Set(ret) return e } // Marshal converts e into a byte slice. func (e *GT) Marshal() []byte { // Each value is a 256-bit number. const numBytes = 256 / 8 ret := make([]byte, numBytes*12) temp := &gfP{} montDecode(temp, &e.p.x.x.x) temp.Marshal(ret) montDecode(temp, &e.p.x.x.y) temp.Marshal(ret[numBytes:]) montDecode(temp, &e.p.x.y.x) temp.Marshal(ret[2*numBytes:]) montDecode(temp, &e.p.x.y.y) temp.Marshal(ret[3*numBytes:]) montDecode(temp, &e.p.y.x.x) temp.Marshal(ret[4*numBytes:]) montDecode(temp, &e.p.y.x.y) temp.Marshal(ret[5*numBytes:]) montDecode(temp, &e.p.y.y.x) temp.Marshal(ret[6*numBytes:]) montDecode(temp, &e.p.y.y.y) temp.Marshal(ret[7*numBytes:]) montDecode(temp, &e.p.z.x.x) temp.Marshal(ret[8*numBytes:]) montDecode(temp, &e.p.z.x.y) temp.Marshal(ret[9*numBytes:]) montDecode(temp, &e.p.z.y.x) temp.Marshal(ret[10*numBytes:]) montDecode(temp, &e.p.z.y.y) temp.Marshal(ret[11*numBytes:]) return ret } // Unmarshal sets e to the result of converting the output of Marshal back into // a group element and then returns e. func (e *GT) Unmarshal(m []byte) ([]byte, error) { // Each value is a 256-bit number. const numBytes = 256 / 8 if len(m) < 12*numBytes { return nil, errors.New("sm9.GT: not enough data") } if e.p == nil { e.p = &gfP12{} } var err error if err = e.p.x.x.x.Unmarshal(m); err != nil { return nil, err } if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil { return nil, err } if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil { return nil, err } if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil { return nil, err } if err = e.p.y.x.x.Unmarshal(m[4*numBytes:]); err != nil { return nil, err } if err = e.p.y.x.y.Unmarshal(m[5*numBytes:]); err != nil { return nil, err } if err = e.p.y.y.x.Unmarshal(m[6*numBytes:]); err != nil { return nil, err } if err = e.p.y.y.y.Unmarshal(m[7*numBytes:]); err != nil { return nil, err } if err = e.p.z.x.x.Unmarshal(m[8*numBytes:]); err != nil { return nil, err } if err = e.p.z.x.y.Unmarshal(m[9*numBytes:]); err != nil { return nil, err } if err = e.p.z.y.x.Unmarshal(m[10*numBytes:]); err != nil { return nil, err } if err = e.p.z.y.y.Unmarshal(m[11*numBytes:]); err != nil { return nil, err } montEncode(&e.p.x.x.x, &e.p.x.x.x) montEncode(&e.p.x.x.y, &e.p.x.x.y) montEncode(&e.p.x.y.x, &e.p.x.y.x) montEncode(&e.p.x.y.y, &e.p.x.y.y) montEncode(&e.p.y.x.x, &e.p.y.x.x) montEncode(&e.p.y.x.y, &e.p.y.x.y) montEncode(&e.p.y.y.x, &e.p.y.y.x) montEncode(&e.p.y.y.y, &e.p.y.y.y) montEncode(&e.p.z.x.x, &e.p.z.x.x) montEncode(&e.p.z.x.y, &e.p.z.x.y) montEncode(&e.p.z.y.x, &e.p.z.y.x) montEncode(&e.p.z.y.y, &e.p.z.y.y) return m[12*numBytes:], nil } // A GTFieldTable holds the first 15 Exp of a value at offset -1, so P // is at table[0], P^15 is at table[14], and P^0 is implicitly the identity // point. type GTFieldTable [15]*GT // Select selects the n-th multiple of the table base point into p. It works in // constant time by iterating over every entry of the table. n must be in [0, 15]. func (table *GTFieldTable) Select(p *GT, n uint8) { if n >= 16 { panic("sm9: internal error: GTFieldTable called with out-of-bounds value") } p.p.SetOne() for i, f := range table { cond := subtle.ConstantTimeByteEq(uint8(i+1), n) gfP12MovCond(p.p, f.p, p.p, cond) } } func GenerateGTFieldTable(basePoint *GT) *[32 * 2]GTFieldTable { table := new([32 * 2]GTFieldTable) base := >{} base.Set(basePoint) for i := 0; i < 32*2; i++ { table[i][0] = >{} table[i][0].Set(base) for j := 1; j < 15; j += 2 { table[i][j] = >{} table[i][j].p = &gfP12{} table[i][j].p.Cyclo6SquareNC(table[i][j/2].p) table[i][j+1] = >{} table[i][j+1].p = &gfP12{} table[i][j+1].Add(table[i][j], base) } base.p.Squares(base.p, 4) } return table } // ScalarBaseMultGT compute basepoint^r with precomputed table func ScalarBaseMultGT(tables *[32 * 2]GTFieldTable, scalar []byte) (*GT, error) { if len(scalar) != 32 { return nil, errors.New("invalid scalar length") } // This is also a scalar multiplication with a four-bit window like in // ScalarMult, but in this case the doublings are precomputed. The value // [windowValue]G added at iteration k would normally get doubled // (totIterations-k)×4 times, but with a larger precomputation we can // instead add [2^((totIterations-k)×4)][windowValue]G and avoid the // doublings between iterations. e, t := >{}, >{} tableIndex := len(tables) - 1 e.SetOne() t.SetOne() for _, byte := range scalar { windowValue := byte >> 4 tables[tableIndex].Select(t, windowValue) e.Add(e, t) tableIndex-- windowValue = byte & 0b1111 tables[tableIndex].Select(t, windowValue) e.Add(e, t) tableIndex-- } return e, nil } // ScalarMultGT compute a^scalar func ScalarMultGT(a *GT, scalar []byte) (*GT, error) { var table GTFieldTable table[0] = >{} table[0].Set(a) for i := 1; i < 15; i += 2 { table[i] = >{} table[i].p = &gfP12{} table[i].p.Cyclo6SquareNC(table[i/2].p) table[i+1] = >{} table[i+1].p = &gfP12{} table[i+1].Add(table[i], a) } e, t := >{}, >{} e.SetOne() t.SetOne() for i, byte := range scalar { // No need to double on the first iteration, as p is the identity at // this point, and [N]∞ = ∞. if i != 0 { e.p.Cyclo6Squares(e.p, 4) } windowValue := byte >> 4 table.Select(t, windowValue) e.Add(e, t) e.p.Cyclo6Squares(e.p, 4) windowValue = byte & 0b1111 table.Select(t, windowValue) e.Add(e, t) } return e, nil }