// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package bigmod import ( "errors" "math/big" "math/bits" ) const ( // _W is the number of bits we use for our limbs. _W = bits.UintSize - 1 // _MASK selects _W bits from a full machine word. _MASK = (1 << _W) - 1 ) // choice represents a constant-time boolean. The value of choice is always // either 1 or 0. We use an int instead of bool in order to make decisions in // constant time by turning it into a mask. type choice uint func not(c choice) choice { return 1 ^ c } const yes = choice(1) const no = choice(0) // ctSelect returns x if on == 1, and y if on == 0. The execution time of this // function does not depend on its inputs. If on is any value besides 1 or 0, // the result is undefined. func ctSelect(on choice, x, y uint) uint { // When on == 1, mask is 0b111..., otherwise mask is 0b000... mask := -uint(on) // When mask is all zeros, we just have y, otherwise, y cancels with itself. return y ^ (mask & (y ^ x)) } // ctEq returns 1 if x == y, and 0 otherwise. The execution time of this // function does not depend on its inputs. func ctEq(x, y uint) choice { // If x != y, then either x - y or y - x will generate a carry. _, c1 := bits.Sub(x, y, 0) _, c2 := bits.Sub(y, x, 0) return not(choice(c1 | c2)) } // ctGeq returns 1 if x >= y, and 0 otherwise. The execution time of this // function does not depend on its inputs. func ctGeq(x, y uint) choice { // If x < y, then x - y generates a carry. _, carry := bits.Sub(x, y, 0) return not(choice(carry)) } // Nat represents an arbitrary natural number // // Each Nat has an announced length, which is the number of limbs it has stored. // Operations on this number are allowed to leak this length, but will not leak // any information about the values contained in those limbs. type Nat struct { // limbs is a little-endian representation in base 2^W with // W = bits.UintSize - 1. The top bit is always unset between operations. // // The top bit is left unset to optimize Montgomery multiplication, in the // inner loop of exponentiation. Using fully saturated limbs would leave us // working with 129-bit numbers on 64-bit platforms, wasting a lot of space, // and thus time. limbs []uint } // preallocTarget is the size in bits of the numbers used to implement the most // common and most performant RSA key size. It's also enough to cover some of // the operations of key sizes up to 4096. const preallocTarget = 2048 const preallocLimbs = (preallocTarget + _W - 1) / _W // NewNat returns a new nat with a size of zero, just like new(Nat), but with // the preallocated capacity to hold a number of up to preallocTarget bits. // NewNat inlines, so the allocation can live on the stack. func NewNat() *Nat { limbs := make([]uint, 0, preallocLimbs) return &Nat{limbs} } // expand expands x to n limbs, leaving its value unchanged. func (x *Nat) expand(n int) *Nat { if len(x.limbs) > n { panic("bigmod: internal error: shrinking nat") } if cap(x.limbs) < n { newLimbs := make([]uint, n) copy(newLimbs, x.limbs) x.limbs = newLimbs return x } extraLimbs := x.limbs[len(x.limbs):n] for i := range extraLimbs { extraLimbs[i] = 0 } x.limbs = x.limbs[:n] return x } // reset returns a zero nat of n limbs, reusing x's storage if n <= cap(x.limbs). func (x *Nat) reset(n int) *Nat { if cap(x.limbs) < n { x.limbs = make([]uint, n) return x } for i := range x.limbs { x.limbs[i] = 0 } x.limbs = x.limbs[:n] return x } // set assigns x = y, optionally resizing x to the appropriate size. func (x *Nat) set(y *Nat) *Nat { x.reset(len(y.limbs)) copy(x.limbs, y.limbs) return x } // setBig assigns x = n, optionally resizing n to the appropriate size. // // The announced length of x is set based on the actual bit size of the input, // ignoring leading zeroes. func (x *Nat) setBig(n *big.Int) *Nat { requiredLimbs := (n.BitLen() + _W - 1) / _W x.reset(requiredLimbs) outI := 0 shift := 0 limbs := n.Bits() for i := range limbs { xi := uint(limbs[i]) x.limbs[outI] |= (xi << shift) & _MASK outI++ if outI == requiredLimbs { return x } x.limbs[outI] = xi >> (_W - shift) shift++ // this assumes bits.UintSize - _W = 1 if shift == _W { shift = 0 outI++ } } return x } // Bytes returns x as a zero-extended big-endian byte slice. The size of the // slice will match the size of m. // // x must have the same size as m and it must be reduced modulo m. func (x *Nat) Bytes(m *Modulus) []byte { bytes := make([]byte, m.Size()) shift := 0 outI := len(bytes) - 1 for _, limb := range x.limbs { remainingBits := _W for remainingBits >= 8 { bytes[outI] |= byte(limb) << shift consumed := 8 - shift limb >>= consumed remainingBits -= consumed shift = 0 outI-- if outI < 0 { return bytes } } bytes[outI] = byte(limb) shift = remainingBits } return bytes } // SetBytes assigns x = b, where b is a slice of big-endian bytes. // SetBytes returns an error if b >= m. // // The output will be resized to the size of m and overwritten. func (x *Nat) SetBytes(b []byte, m *Modulus) (*Nat, error) { if err := x.setBytes(b, m); err != nil { return nil, err } if x.cmpGeq(m.nat) == yes { return nil, errors.New("input overflows the modulus") } return x, nil } // SetOverflowingBytes assigns x = b, where b is a slice of big-endian bytes. SetOverflowingBytes // returns an error if b has a longer bit length than m, but reduces overflowing // values up to 2^⌈log2(m)⌉ - 1. // // The output will be resized to the size of m and overwritten. func (x *Nat) SetOverflowingBytes(b []byte, m *Modulus) (*Nat, error) { if err := x.setBytes(b, m); err != nil { return nil, err } leading := _W - bitLen(x.limbs[len(x.limbs)-1]) if leading < m.leading { return nil, errors.New("input overflows the modulus") } x.sub(x.cmpGeq(m.nat), m.nat) return x, nil } func (x *Nat) setBytes(b []byte, m *Modulus) error { outI := 0 shift := 0 x.resetFor(m) for i := len(b) - 1; i >= 0; i-- { bi := b[i] x.limbs[outI] |= uint(bi) << shift shift += 8 if shift >= _W { shift -= _W x.limbs[outI] &= _MASK overflow := bi >> (8 - shift) outI++ if outI >= len(x.limbs) { if overflow > 0 || i > 0 { return errors.New("input overflows the modulus") } break } x.limbs[outI] = uint(overflow) } } return nil } // Equal returns 1 if x == y, and 0 otherwise. // // Both operands must have the same announced length. func (x *Nat) Equal(y *Nat) choice { // Eliminate bounds checks in the loop. size := len(x.limbs) xLimbs := x.limbs[:size] yLimbs := y.limbs[:size] equal := yes for i := 0; i < size; i++ { equal &= ctEq(xLimbs[i], yLimbs[i]) } return equal } // IsZero returns 1 if x == 0, and 0 otherwise. func (x *Nat) IsZero() choice { // Eliminate bounds checks in the loop. size := len(x.limbs) xLimbs := x.limbs[:size] zero := yes for i := 0; i < size; i++ { zero &= ctEq(xLimbs[i], 0) } return zero } // cmpGeq returns 1 if x >= y, and 0 otherwise. // // Both operands must have the same announced length. func (x *Nat) cmpGeq(y *Nat) choice { // Eliminate bounds checks in the loop. size := len(x.limbs) xLimbs := x.limbs[:size] yLimbs := y.limbs[:size] var c uint for i := 0; i < size; i++ { c = (xLimbs[i] - yLimbs[i] - c) >> _W } // If there was a carry, then subtracting y underflowed, so // x is not greater than or equal to y. return not(choice(c)) } // assign sets x <- y if on == 1, and does nothing otherwise. // // Both operands must have the same announced length. func (x *Nat) assign(on choice, y *Nat) *Nat { // Eliminate bounds checks in the loop. size := len(x.limbs) xLimbs := x.limbs[:size] yLimbs := y.limbs[:size] for i := 0; i < size; i++ { xLimbs[i] = ctSelect(on, yLimbs[i], xLimbs[i]) } return x } // add computes x += y if on == 1, and does nothing otherwise. It returns the // carry of the addition regardless of on. // // Both operands must have the same announced length. func (x *Nat) add(on choice, y *Nat) (c uint) { // Eliminate bounds checks in the loop. size := len(x.limbs) xLimbs := x.limbs[:size] yLimbs := y.limbs[:size] for i := 0; i < size; i++ { res := xLimbs[i] + yLimbs[i] + c xLimbs[i] = ctSelect(on, res&_MASK, xLimbs[i]) c = res >> _W } return } // sub computes x -= y if on == 1, and does nothing otherwise. It returns the // borrow of the subtraction regardless of on. // // Both operands must have the same announced length. func (x *Nat) sub(on choice, y *Nat) (c uint) { // Eliminate bounds checks in the loop. size := len(x.limbs) xLimbs := x.limbs[:size] yLimbs := y.limbs[:size] for i := 0; i < size; i++ { res := xLimbs[i] - yLimbs[i] - c xLimbs[i] = ctSelect(on, res&_MASK, xLimbs[i]) c = res >> _W } return } // Modulus is used for modular arithmetic, precomputing relevant constants. // // Moduli are assumed to be odd numbers. Moduli can also leak the exact // number of bits needed to store their value, and are stored without padding. // // Their actual value is still kept secret. type Modulus struct { // The underlying natural number for this modulus. // // This will be stored without any padding, and shouldn't alias with any // other natural number being used. nat *Nat leading int // number of leading zeros in the modulus m0inv uint // -nat.limbs[0]⁻¹ mod _W rr *Nat // R*R for montgomeryRepresentation } // rr returns R*R with R = 2^(_W * n) and n = len(m.nat.limbs). func rr(m *Modulus) *Nat { rr := NewNat().ExpandFor(m) // R*R is 2^(2 * _W * n). We can safely get 2^(_W * (n - 1)) by setting the // most significant limb to 1. We then get to R*R by shifting left by _W // n + 1 times. n := len(rr.limbs) rr.limbs[n-1] = 1 for i := n - 1; i < 2*n; i++ { rr.shiftIn(0, m) // x = x * 2^_W mod m } return rr } // minusInverseModW computes -x⁻¹ mod _W with x odd. // // This operation is used to precompute a constant involved in Montgomery // multiplication. func minusInverseModW(x uint) uint { // Every iteration of this loop doubles the least-significant bits of // correct inverse in y. The first three bits are already correct (1⁻¹ = 1, // 3⁻¹ = 3, 5⁻¹ = 5, and 7⁻¹ = 7 mod 8), so doubling five times is enough // for 61 bits (and wastes only one iteration for 31 bits). // // See https://crypto.stackexchange.com/a/47496. y := x for i := 0; i < 5; i++ { y = y * (2 - x*y) } return (1 << _W) - (y & _MASK) } // NewModulusFromBig creates a new Modulus from a [big.Int]. // // The Int must be odd. The number of significant bits must be leakable. func NewModulusFromBig(n *big.Int) *Modulus { m := &Modulus{} m.nat = NewNat().setBig(n) m.leading = _W - bitLen(m.nat.limbs[len(m.nat.limbs)-1]) m.m0inv = minusInverseModW(m.nat.limbs[0]) m.rr = rr(m) return m } // bitLen is a version of bits.Len that only leaks the bit length of n, but not // its value. bits.Len and bits.LeadingZeros use a lookup table for the // low-order bits on some architectures. func bitLen(n uint) int { var len int // We assume, here and elsewhere, that comparison to zero is constant time // with respect to different non-zero values. for n != 0 { len++ n >>= 1 } return len } // Size returns the size of m in bytes. func (m *Modulus) Size() int { return (m.BitLen() + 7) / 8 } // BitLen returns the size of m in bits. func (m *Modulus) BitLen() int { return len(m.nat.limbs)*_W - int(m.leading) } // Nat returns m as a Nat. The return value must not be written to. func (m *Modulus) Nat() *Nat { return m.nat } // shiftIn calculates x = x << _W + y mod m. // // This assumes that x is already reduced mod m, and that y < 2^_W. func (x *Nat) shiftIn(y uint, m *Modulus) *Nat { d := NewNat().resetFor(m) // Eliminate bounds checks in the loop. size := len(m.nat.limbs) xLimbs := x.limbs[:size] dLimbs := d.limbs[:size] mLimbs := m.nat.limbs[:size] // Each iteration of this loop computes x = 2x + b mod m, where b is a bit // from y. Effectively, it left-shifts x and adds y one bit at a time, // reducing it every time. // // To do the reduction, each iteration computes both 2x + b and 2x + b - m. // The next iteration (and finally the return line) will use either result // based on whether the subtraction underflowed. needSubtraction := no for i := _W - 1; i >= 0; i-- { carry := (y >> i) & 1 var borrow uint for i := 0; i < size; i++ { l := ctSelect(needSubtraction, dLimbs[i], xLimbs[i]) res := l<<1 + carry xLimbs[i] = res & _MASK carry = res >> _W res = xLimbs[i] - mLimbs[i] - borrow dLimbs[i] = res & _MASK borrow = res >> _W } // See Add for how carry (aka overflow), borrow (aka underflow), and // needSubtraction relate. needSubtraction = ctEq(carry, borrow) } return x.assign(needSubtraction, d) } // Mod calculates out = x mod m. // // This works regardless how large the value of x is. // // The output will be resized to the size of m and overwritten. func (out *Nat) Mod(x *Nat, m *Modulus) *Nat { out.resetFor(m) // Working our way from the most significant to the least significant limb, // we can insert each limb at the least significant position, shifting all // previous limbs left by _W. This way each limb will get shifted by the // correct number of bits. We can insert at least N - 1 limbs without // overflowing m. After that, we need to reduce every time we shift. i := len(x.limbs) - 1 // For the first N - 1 limbs we can skip the actual shifting and position // them at the shifted position, which starts at min(N - 2, i). start := len(m.nat.limbs) - 2 if i < start { start = i } for j := start; j >= 0; j-- { out.limbs[j] = x.limbs[i] i-- } // We shift in the remaining limbs, reducing modulo m each time. for i >= 0 { out.shiftIn(x.limbs[i], m) i-- } return out } // ExpandFor ensures out has the right size to work with operations modulo m. // // The announced size of out must be smaller than or equal to that of m. func (out *Nat) ExpandFor(m *Modulus) *Nat { return out.expand(len(m.nat.limbs)) } // resetFor ensures out has the right size to work with operations modulo m. // // out is zeroed and may start at any size. func (out *Nat) resetFor(m *Modulus) *Nat { return out.reset(len(m.nat.limbs)) } // Sub computes x = x - y mod m. // // The length of both operands must be the same as the modulus. Both operands // must already be reduced modulo m. func (x *Nat) Sub(y *Nat, m *Modulus) *Nat { underflow := x.sub(yes, y) // If the subtraction underflowed, add m. x.add(choice(underflow), m.nat) return x } // Add computes x = x + y mod m. // // The length of both operands must be the same as the modulus. Both operands // must already be reduced modulo m. func (x *Nat) Add(y *Nat, m *Modulus) *Nat { overflow := x.add(yes, y) underflow := not(x.cmpGeq(m.nat)) // x < m // Three cases are possible: // // - overflow = 0, underflow = 0 // // In this case, addition fits in our limbs, but we can still subtract away // m without an underflow, so we need to perform the subtraction to reduce // our result. // // - overflow = 0, underflow = 1 // // The addition fits in our limbs, but we can't subtract m without // underflowing. The result is already reduced. // // - overflow = 1, underflow = 1 // // The addition does not fit in our limbs, and the subtraction's borrow // would cancel out with the addition's carry. We need to subtract m to // reduce our result. // // The overflow = 1, underflow = 0 case is not possible, because y is at // most m - 1, and if adding m - 1 overflows, then subtracting m must // necessarily underflow. needSubtraction := ctEq(overflow, uint(underflow)) x.sub(needSubtraction, m.nat) return x } // montgomeryRepresentation calculates x = x * R mod m, with R = 2^(_W * n) and // n = len(m.nat.limbs). // // Faster Montgomery multiplication replaces standard modular multiplication for // numbers in this representation. // // This assumes that x is already reduced mod m. func (x *Nat) montgomeryRepresentation(m *Modulus) *Nat { // A Montgomery multiplication (which computes a * b / R) by R * R works out // to a multiplication by R, which takes the value out of the Montgomery domain. return x.montgomeryMul(NewNat().set(x), m.rr, m) } // montgomeryReduction calculates x = x / R mod m, with R = 2^(_W * n) and // n = len(m.nat.limbs). // // This assumes that x is already reduced mod m. func (x *Nat) montgomeryReduction(m *Modulus) *Nat { // By Montgomery multiplying with 1 not in Montgomery representation, we // convert out back from Montgomery representation, because it works out to // dividing by R. t0 := NewNat().set(x) t1 := NewNat().ExpandFor(m) t1.limbs[0] = 1 return x.montgomeryMul(t0, t1, m) } // montgomeryMul calculates d = a * b / R mod m, with R = 2^(_W * n) and // n = len(m.nat.limbs), using the Montgomery Multiplication technique. // // All inputs should be the same length, not aliasing d, and already // reduced modulo m. d will be resized to the size of m and overwritten. func (d *Nat) montgomeryMul(a *Nat, b *Nat, m *Modulus) *Nat { d.resetFor(m) if len(a.limbs) != len(m.nat.limbs) || len(b.limbs) != len(m.nat.limbs) { panic("bigmod: invalid montgomeryMul input") } // See https://bearssl.org/bigint.html#montgomery-reduction-and-multiplication // for a description of the algorithm implemented mostly in montgomeryLoop. // See Add for how overflow, underflow, and needSubtraction relate. overflow := montgomeryLoop(d.limbs, a.limbs, b.limbs, m.nat.limbs, m.m0inv) underflow := not(d.cmpGeq(m.nat)) // d < m needSubtraction := ctEq(overflow, uint(underflow)) d.sub(needSubtraction, m.nat) return d } func montgomeryLoopGeneric(d, a, b, m []uint, m0inv uint) (overflow uint) { // Eliminate bounds checks in the loop. size := len(d) a = a[:size] b = b[:size] m = m[:size] for _, ai := range a { // This is an unrolled iteration of the loop below with j = 0. hi, lo := bits.Mul(ai, b[0]) z_lo, c := bits.Add(d[0], lo, 0) f := (z_lo * m0inv) & _MASK // (d[0] + a[i] * b[0]) * m0inv z_hi, _ := bits.Add(0, hi, c) hi, lo = bits.Mul(f, m[0]) z_lo, c = bits.Add(z_lo, lo, 0) z_hi, _ = bits.Add(z_hi, hi, c) carry := z_hi<<1 | z_lo>>_W for j := 1; j < size; j++ { // z = d[j] + a[i] * b[j] + f * m[j] + carry <= 2^(2W+1) - 2^(W+1) + 2^W hi, lo := bits.Mul(ai, b[j]) z_lo, c := bits.Add(d[j], lo, 0) z_hi, _ := bits.Add(0, hi, c) hi, lo = bits.Mul(f, m[j]) z_lo, c = bits.Add(z_lo, lo, 0) z_hi, _ = bits.Add(z_hi, hi, c) z_lo, c = bits.Add(z_lo, carry, 0) z_hi, _ = bits.Add(z_hi, 0, c) d[j-1] = z_lo & _MASK carry = z_hi<<1 | z_lo>>_W // carry <= 2^(W+1) - 2 } z := overflow + carry // z <= 2^(W+1) - 1 d[size-1] = z & _MASK overflow = z >> _W // overflow <= 1 } return } // Mul calculates x *= y mod m. // // x and y must already be reduced modulo m, they must share its announced // length, and they may not alias. func (x *Nat) Mul(y *Nat, m *Modulus) *Nat { // A Montgomery multiplication by a value out of the Montgomery domain // takes the result out of Montgomery representation. xR := NewNat().set(x).montgomeryRepresentation(m) // xR = x * R mod m return x.montgomeryMul(xR, y, m) // x = xR * y / R mod m } // Exp calculates out = x^e mod m. // // The exponent e is represented in big-endian order. The output will be resized // to the size of m and overwritten. x must already be reduced modulo m. func (out *Nat) Exp(x *Nat, e []byte, m *Modulus) *Nat { // We use a 4 bit window. For our RSA workload, 4 bit windows are faster // than 2 bit windows, but use an extra 12 nats worth of scratch space. // Using bit sizes that don't divide 8 are more complex to implement. table := [(1 << 4) - 1]*Nat{ // table[i] = x ^ (i+1) // newNat calls are unrolled so they are allocated on the stack. NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), } table[0].set(x).montgomeryRepresentation(m) for i := 1; i < len(table); i++ { table[i].montgomeryMul(table[i-1], table[0], m) } out.resetFor(m) out.limbs[0] = 1 out.montgomeryRepresentation(m) t0 := NewNat().ExpandFor(m) t1 := NewNat().ExpandFor(m) for _, b := range e { for _, j := range []int{4, 0} { // Square four times. t1.montgomeryMul(out, out, m) out.montgomeryMul(t1, t1, m) t1.montgomeryMul(out, out, m) out.montgomeryMul(t1, t1, m) // Select x^k in constant time from the table. k := uint((b >> j) & 0b1111) for i := range table { t0.assign(ctEq(k, uint(i+1)), table[i]) } // Multiply by x^k, discarding the result if k = 0. t1.montgomeryMul(out, t0, m) out.assign(not(ctEq(k, 0)), t1) } } return out.montgomeryReduction(m) }