// Package sm2 implements ShangMi(SM) sm2 digital signature, public key encryption and key exchange algorithms. package sm2 // Further references: // [NSA]: Suite B implementer's guide to FIPS 186-3 // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.4503&rep=rep1&type=pdf // [SECG]: SECG, SEC1 // http://www.secg.org/sec1-v2.pdf // [GM/T]: SM2 GB/T 32918.2-2016, GB/T 32918.4-2016 // import ( "crypto" "crypto/ecdsa" "crypto/subtle" "errors" "fmt" "io" "math/big" "github.com/emmansun/gmsm/internal/bigmod" _sm2ec "github.com/emmansun/gmsm/internal/sm2ec" _subtle "github.com/emmansun/gmsm/internal/subtle" "github.com/emmansun/gmsm/sm3" "golang.org/x/crypto/cryptobyte" "golang.org/x/crypto/cryptobyte/asn1" ) const ( uncompressed byte = 0x04 compressed02 byte = 0x02 compressed03 byte = compressed02 | 0x01 hybrid06 byte = 0x06 hybrid07 byte = hybrid06 | 0x01 ) type pointMarshalMode byte const ( //MarshalUncompressed uncompressed marshal mode MarshalUncompressed pointMarshalMode = iota //MarshalCompressed compressed marshal mode MarshalCompressed //MarshalHybrid hybrid marshal mode MarshalHybrid ) type ciphertextSplicingOrder byte const ( C1C3C2 ciphertextSplicingOrder = iota C1C2C3 ) // splitC2C3 splits the given ciphertext into two parts, C2 and C3, based on the splicing order. // If the order is C1C3C2, it returns the first sm3.Size bytes as C3 and the rest as C2. // Otherwise, it returns the first part as C2 and the last sm3.Size bytes as C3. func (order ciphertextSplicingOrder) splitC2C3(ciphertext []byte) ([]byte, []byte) { if order == C1C3C2 { return ciphertext[sm3.Size:], ciphertext[:sm3.Size] } return ciphertext[:len(ciphertext)-sm3.Size], ciphertext[len(ciphertext)-sm3.Size:] } // spliceCiphertext splices the given ciphertext components together based on the splicing order. func (order ciphertextSplicingOrder) spliceCiphertext(c1, c2, c3 []byte) ([]byte, error) { switch order { case C1C3C2: return append(append(c1, c3...), c2...), nil case C1C2C3: return append(append(c1, c2...), c3...), nil default: return nil, errors.New("sm2: invalid ciphertext splicing order") } } type ciphertextEncoding byte const ( ENCODING_PLAIN ciphertextEncoding = iota ENCODING_ASN1 ) // EncrypterOpts represents the options for the SM2 encryption process. // It includes settings for ciphertext encoding, point marshaling mode, // and the order in which the ciphertext components are spliced together. type EncrypterOpts struct { ciphertextEncoding ciphertextEncoding pointMarshalMode pointMarshalMode ciphertextSplicingOrder ciphertextSplicingOrder } // DecrypterOpts represents the options for the decryption process. // It includes settings for how the ciphertext is encoded and how the // components of the ciphertext are spliced together. // // Fields: // - ciphertextEncoding: Specifies the encoding format of the ciphertext. // - ciphertextSplicingOrder: Defines the order in which the components // of the ciphertext are spliced together. type DecrypterOpts struct { ciphertextEncoding ciphertextEncoding ciphertextSplicingOrder ciphertextSplicingOrder } // NewPlainEncrypterOpts creates a SM2 non-ASN1 encrypter options. func NewPlainEncrypterOpts(marshalMode pointMarshalMode, splicingOrder ciphertextSplicingOrder) *EncrypterOpts { return &EncrypterOpts{ENCODING_PLAIN, marshalMode, splicingOrder} } // NewPlainDecrypterOpts creates a SM2 non-ASN1 decrypter options. func NewPlainDecrypterOpts(splicingOrder ciphertextSplicingOrder) *DecrypterOpts { return &DecrypterOpts{ENCODING_PLAIN, splicingOrder} } var ( defaultEncrypterOpts = &EncrypterOpts{ENCODING_PLAIN, MarshalUncompressed, C1C3C2} ASN1EncrypterOpts = &EncrypterOpts{ENCODING_ASN1, MarshalUncompressed, C1C3C2} ASN1DecrypterOpts = &DecrypterOpts{ENCODING_ASN1, C1C3C2} ) const maxRetryLimit = 100 var errCiphertextTooShort = errors.New("sm2: ciphertext too short") // EncryptASN1 sm2 encrypt and output ASN.1 result, compliance with GB/T 32918.4-2016. // // The random parameter is used as a source of entropy to ensure that // encrypting the same message twice doesn't result in the same ciphertext. // Most applications should use [crypto/rand.Reader] as random. func EncryptASN1(random io.Reader, pub *ecdsa.PublicKey, msg []byte) ([]byte, error) { return Encrypt(random, pub, msg, ASN1EncrypterOpts) } // Encrypt sm2 encrypt implementation, compliance with GB/T 32918.4-2016. // // The random parameter is used as a source of entropy to ensure that // encrypting the same message twice doesn't result in the same ciphertext. // Most applications should use [crypto/rand.Reader] as random. func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *EncrypterOpts) ([]byte, error) { //A3, requirement is to check if h*P is infinite point, h is 1 if pub.X.Sign() == 0 && pub.Y.Sign() == 0 { return nil, errors.New("sm2: public key point is the infinity") } if len(msg) == 0 { return nil, nil } if opts == nil { opts = defaultEncrypterOpts } switch pub.Curve.Params() { case P256().Params(): return encryptSM2EC(p256(), pub, random, msg, opts) default: return encryptLegacy(random, pub, msg, opts) } } func encryptSM2EC(c *sm2Curve, pub *ecdsa.PublicKey, random io.Reader, msg []byte, opts *EncrypterOpts) ([]byte, error) { Q, err := c.pointFromAffine(pub.X, pub.Y) if err != nil { return nil, err } retryCount := 0 for { k, C1, err := randomPoint(c, random, false) if err != nil { return nil, err } C2, err := Q.ScalarMult(Q, k.Bytes(c.N)) if err != nil { return nil, err } C2Bytes := C2.Bytes()[1:] c2 := sm3.Kdf(C2Bytes, len(msg)) if _subtle.ConstantTimeAllZero(c2) == 1 { retryCount++ if retryCount > maxRetryLimit { return nil, fmt.Errorf("sm2: A5, failed to calculate valid t, tried %v times", retryCount) } continue } //A6, C2 = M + t; subtle.XORBytes(c2, msg, c2) //A7, C3 = hash(x2||M||y2) md := sm3.New() md.Write(C2Bytes[:len(C2Bytes)/2]) md.Write(msg) md.Write(C2Bytes[len(C2Bytes)/2:]) c3 := md.Sum(nil) if opts.ciphertextEncoding == ENCODING_PLAIN { return encodeCiphertext(opts, C1, c2, c3) } return encodingCiphertextASN1(C1, c2, c3) } } func encodeCiphertext(opts *EncrypterOpts, C1 *_sm2ec.SM2P256Point, c2, c3 []byte) ([]byte, error) { var c1 []byte switch opts.pointMarshalMode { case MarshalCompressed: c1 = C1.BytesCompressed() default: c1 = C1.Bytes() } return opts.ciphertextSplicingOrder.spliceCiphertext(c1, c2, c3) } func encodingCiphertextASN1(C1 *_sm2ec.SM2P256Point, c2, c3 []byte) ([]byte, error) { c1 := C1.Bytes() var b cryptobyte.Builder b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { addASN1IntBytes(b, c1[1:len(c1)/2+1]) addASN1IntBytes(b, c1[len(c1)/2+1:]) b.AddASN1OctetString(c3) b.AddASN1OctetString(c2) }) return b.Bytes() } // Decrypt decrypts ciphertext msg to plaintext. // The opts argument should be appropriate for the primitive used. // Compliance with GB/T 32918.4-2016 chapter 7. func (priv *PrivateKey) Decrypt(rand io.Reader, msg []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { var sm2Opts *DecrypterOpts sm2Opts, _ = opts.(*DecrypterOpts) return decrypt(priv, msg, sm2Opts) } // Decrypt sm2 decrypt implementation by default DecrypterOpts{C1C3C2}. // Compliance with GB/T 32918.4-2016. func Decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) { return decrypt(priv, ciphertext, nil) } // ErrDecryption represents a failure to decrypt a message. // It is deliberately vague to avoid adaptive attacks. var ErrDecryption = errors.New("sm2: decryption error") func decrypt(priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) { ciphertextLen := len(ciphertext) if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size { return nil, errCiphertextTooShort } switch priv.Curve.Params() { case P256().Params(): return decryptSM2EC(p256(), priv, ciphertext, opts) default: return decryptLegacy(priv, ciphertext, opts) } } func decryptSM2EC(c *sm2Curve, priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) { C1, c2, c3, err := parseCiphertext(c, ciphertext, opts) if err != nil { return nil, ErrDecryption } d, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N) if err != nil { return nil, ErrDecryption } C2, err := C1.ScalarMult(C1, d.Bytes(c.N)) if err != nil { return nil, ErrDecryption } C2Bytes := C2.Bytes()[1:] msgLen := len(c2) msg := sm3.Kdf(C2Bytes, msgLen) if _subtle.ConstantTimeAllZero(c2) == 1 { return nil, ErrDecryption } //B5, calculate msg = c2 ^ t subtle.XORBytes(msg, c2, msg) md := sm3.New() md.Write(C2Bytes[:len(C2Bytes)/2]) md.Write(msg) md.Write(C2Bytes[len(C2Bytes)/2:]) u := md.Sum(nil) if subtle.ConstantTimeCompare(u, c3) == 1 { return msg, nil } return nil, ErrDecryption } // parseCiphertext parses the given ciphertext according to the specified SM2 curve and decryption options. // It returns the parsed SM2 point (C1), the decrypted message (C2), the message digest (C3), and an error if any. func parseCiphertext(c *sm2Curve, ciphertext []byte, opts *DecrypterOpts) (*_sm2ec.SM2P256Point, []byte, []byte, error) { bitSize := c.curve.Params().BitSize byteLen := (bitSize + 7) / 8 splicingOrder := C1C3C2 if opts != nil { splicingOrder = opts.ciphertextSplicingOrder } var ciphertextFormat byte = 0xff // invalid if len(ciphertext) > 0 { ciphertextFormat = ciphertext[0] } var c1Len int switch ciphertextFormat { case byte(asn1.SEQUENCE): return parseCiphertextASN1(c, ciphertext) case uncompressed: c1Len = 1 + 2*byteLen case compressed02, compressed03: c1Len = 1 + byteLen default: return nil, nil, nil, errors.New("sm2: invalid/unsupported ciphertext format") } if len(ciphertext) < c1Len+sm3.Size { return nil, nil, nil, errCiphertextTooShort } C1, err := c.newPoint().SetBytes(ciphertext[:c1Len]) if err != nil { return nil, nil, nil, err } c2, c3 := splicingOrder.splitC2C3(ciphertext[c1Len:]) return C1, c2, c3, nil } func unmarshalASN1Ciphertext(ciphertext []byte) (*big.Int, *big.Int, []byte, []byte, error) { var ( x1, y1 = &big.Int{}, &big.Int{} c2, c3 []byte inner cryptobyte.String ) input := cryptobyte.String(ciphertext) if !input.ReadASN1(&inner, asn1.SEQUENCE) || !input.Empty() || !inner.ReadASN1Integer(x1) || !inner.ReadASN1Integer(y1) || !inner.ReadASN1Bytes(&c3, asn1.OCTET_STRING) || !inner.ReadASN1Bytes(&c2, asn1.OCTET_STRING) || !inner.Empty() { return nil, nil, nil, nil, errors.New("sm2: invalid asn1 format ciphertext") } return x1, y1, c2, c3, nil } func parseCiphertextASN1(c *sm2Curve, ciphertext []byte) (*_sm2ec.SM2P256Point, []byte, []byte, error) { x1, y1, c2, c3, err := unmarshalASN1Ciphertext(ciphertext) if err != nil { return nil, nil, nil, err } C1, err := c.pointFromAffine(x1, y1) if err != nil { return nil, nil, nil, err } return C1, c2, c3, nil } // AdjustCiphertextSplicingOrder utility method to change c2 c3 order func AdjustCiphertextSplicingOrder(ciphertext []byte, from, to ciphertextSplicingOrder) ([]byte, error) { curve := p256() if from == to { return ciphertext, nil } C1, c2, c3, err := parseCiphertext(curve, ciphertext, NewPlainDecrypterOpts(from)) if err != nil { return nil, err } opts := NewPlainEncrypterOpts(MarshalUncompressed, to) if ciphertext[0] == compressed02 || ciphertext[0] == compressed03 { opts.pointMarshalMode = MarshalCompressed } return encodeCiphertext(opts, C1, c2, c3) } // ASN1Ciphertext2Plain utility method to convert ASN.1 encoding ciphertext to plain encoding format func ASN1Ciphertext2Plain(ciphertext []byte, opts *EncrypterOpts) ([]byte, error) { if opts == nil { opts = defaultEncrypterOpts } C1, c2, c3, err := parseCiphertextASN1(p256(), ciphertext) if err != nil { return nil, err } return encodeCiphertext(opts, C1, c2, c3) } // PlainCiphertext2ASN1 utility method to convert plain encoding ciphertext to ASN.1 encoding format func PlainCiphertext2ASN1(ciphertext []byte, from ciphertextSplicingOrder) ([]byte, error) { C1, c2, c3, err := parseCiphertext(p256(), ciphertext, NewPlainDecrypterOpts(from)) if err != nil { return nil, err } return encodingCiphertextASN1(C1, c2, c3) }