package bn256 import ( "crypto/subtle" "math/big" ) // curvePoint implements the elliptic curve y²=x³+5. Points are kept in Jacobian // form and t=z² when valid. G₁ is the set of points of this curve on GF(p). type curvePoint struct { x, y, z, t gfP } var curveB = newGFp(5) var threeCurveB = newGFp(3 * 5) // curveGen is the generator of G₁. var curveGen = &curvePoint{ x: *fromBigInt(bigFromHex("93DE051D62BF718FF5ED0704487D01D6E1E4086909DC3280E8C4E4817C66DDDD")), y: *fromBigInt(bigFromHex("21FE8DDA4F21E607631065125C395BBC1C1C00CBFA6024350C464CD70A3EA616")), z: *one, t: *one, } func (c *curvePoint) String() string { c.MakeAffine() x, y := &gfP{}, &gfP{} montDecode(x, &c.x) montDecode(y, &c.y) return "(" + x.String() + ", " + y.String() + ")" } func (c *curvePoint) Set(a *curvePoint) { c.x.Set(&a.x) c.y.Set(&a.y) c.z.Set(&a.z) c.t.Set(&a.t) } func (c *curvePoint) polynomial(x *gfP) *gfP { x3 := &gfP{} gfpSqr(x3, x, 1) gfpMul(x3, x3, x) gfpAdd(x3, x3, curveB) return x3 } // IsOnCurve returns true if c is on the curve. func (c *curvePoint) IsOnCurve() bool { c.MakeAffine() if c.IsInfinity() { // TBC: This is not same as golang elliptic return true } y2 := &gfP{} gfpSqr(y2, &c.y, 1) x3 := c.polynomial(&c.x) return y2.Equal(x3) == 1 } func NewCurvePoint() *curvePoint { c := &curvePoint{} c.SetInfinity() return c } func NewCurveGenerator() *curvePoint { c := &curvePoint{} c.Set(curveGen) return c } func (c *curvePoint) SetInfinity() { c.x.Set(zero) c.y.Set(one) c.z.Set(zero) c.t.Set(zero) } func (c *curvePoint) IsInfinity() bool { return c.z.Equal(zero) == 1 } func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) { sum, t := &curvePoint{}, &curvePoint{} sum.SetInfinity() for i := scalar.BitLen(); i >= 0; i-- { t.Double(sum) if scalar.Bit(i) != 0 { sum.Add(t, a) } else { sum.Set(t) } } c.Set(sum) } // MakeAffine reverses the Jacobian transform. // the Jacobian coordinates are (x1, y1, z1) // where x = x1/z1² and y = y1/z1³. func (c *curvePoint) AffineFromJacobian() { if c.z.Equal(one) == 1 { return } else if c.z.Equal(zero) == 1 { c.x.Set(zero) c.y.Set(one) c.t.Set(zero) return } zInv := &gfP{} zInv.Invert(&c.z) t, zInv2 := &gfP{}, &gfP{} gfpMul(t, &c.y, zInv) // t = y/z gfpSqr(zInv2, zInv, 1) gfpMul(&c.x, &c.x, zInv2) // x = x / z^2 gfpMul(&c.y, t, zInv2) // y = y / z^3 c.z.Set(one) c.t.Set(one) } func (c *curvePoint) Neg(a *curvePoint) { c.x.Set(&a.x) gfpNeg(&c.y, &a.y) c.z.Set(&a.z) c.t.Set(zero) } // A curvePointTable holds the first 15 multiples of a point at offset -1, so [1]P // is at table[0], [15]P is at table[14], and [0]P is implicitly the identity // point. type curvePointTable [15]*curvePoint // Select selects the n-th multiple of the table base point into p. It works in // constant time by iterating over every entry of the table. n must be in [0, 15]. func (table *curvePointTable) Select(p *curvePoint, n uint8) { if n >= 16 { panic("sm9: internal error: curvePointTable called with out-of-bounds value") } p.SetInfinity() for i, f := range table { cond := subtle.ConstantTimeByteEq(uint8(i+1), n) curvePointMovCond(p, f, p, cond) } } // Equal compare e and other func (e *curvePoint) Equal(other *curvePoint) bool { return e.x.Equal(&other.x) == 1 && e.y.Equal(&other.y) == 1 && e.z.Equal(&other.z) == 1 && e.t.Equal(&other.t) == 1 } // Below methods are POC yet, the line add/double functions are still based on // Jacobian coordination. func (c *curvePoint) Add(p1, p2 *curvePoint) { curvePointAddComplete(c, p1, p2) } func (c *curvePoint) AddComplete(p1, p2 *curvePoint) { curvePointAddComplete(c, p1, p2) } func (c *curvePoint) Double(p *curvePoint) { curvePointDoubleComplete(c, p) } func (c *curvePoint) DoubleComplete(p *curvePoint) { curvePointDoubleComplete(c, p) } // MakeAffine reverses the Projective transform. // A = 1/Z1 // X3 = A*X1 // Y3 = A*Y1 // Z3 = 1 func (c *curvePoint) MakeAffine() { // TODO: do we need to change it to constant-time implementation? if c.z.Equal(one) == 1 { return } else if c.z.Equal(zero) == 1 { c.x.Set(zero) c.y.Set(one) c.t.Set(zero) return } zInv := &gfP{} zInv.Invert(&c.z) gfpMul(&c.x, &c.x, zInv) gfpMul(&c.y, &c.y, zInv) c.z.Set(one) c.t.Set(one) } func (c *curvePoint) AffineFromProjective() { c.MakeAffine() } func curvePointDouble(c, a *curvePoint) { // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 A, B, C := &gfP{}, &gfP{}, &gfP{} gfpSqr(A, &a.x, 1) gfpSqr(B, &a.y, 1) gfpSqr(C, B, 1) t := &gfP{} gfpAdd(B, &a.x, B) gfpSqr(t, B, 1) gfpSub(B, t, A) gfpSub(t, B, C) d, e := &gfP{}, &gfP{} gfpDouble(d, t) gfpDouble(B, A) gfpAdd(e, B, A) gfpSqr(A, e, 1) gfpDouble(B, d) gfpSub(&c.x, A, B) gfpMul(&c.z, &a.y, &a.z) gfpDouble(&c.z, &c.z) gfpDouble(B, C) gfpDouble(t, B) gfpDouble(B, t) gfpSub(&c.y, d, &c.x) gfpMul(t, e, &c.y) gfpSub(&c.y, t, B) } func curvePointAdd(c, a, b *curvePoint) int { // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 var pointEq int // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] // by [u1:s1:z1·z2] and [u2:s2:z1·z2] // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ z12, z22 := &gfP{}, &gfP{} gfpSqr(z12, &a.z, 1) gfpSqr(z22, &b.z, 1) u1, u2 := &gfP{}, &gfP{} gfpMul(u1, &a.x, z22) gfpMul(u2, &b.x, z12) t, s1 := &gfP{}, &gfP{} gfpMul(t, &b.z, z22) gfpMul(s1, &a.y, t) s2 := &gfP{} gfpMul(t, &a.z, z12) gfpMul(s2, &b.y, t) // Compute x = (2h)²(s²-u1-u2) // where s = (s2-s1)/(u2-u1) is the slope of the line through // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. // This is also: // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) // = r² - j - 2v // with the notations below. h := &gfP{} gfpSub(h, u2, u1) gfpDouble(t, h) // i = 4h² i := &gfP{} gfpSqr(i, t, 1) // j = 4h³ j := &gfP{} gfpMul(j, h, i) gfpSub(t, s2, s1) pointEq = h.Equal(zero) & t.Equal(zero) r := &gfP{} gfpDouble(r, t) v := &gfP{} gfpMul(v, u1, i) // t4 = 4(s2-s1)² t4, t6 := &gfP{}, &gfP{} gfpSqr(t4, r, 1) gfpDouble(t, v) gfpSub(t6, t4, j) gfpSub(&c.x, t6, t) // Set y = -(2h)³(s1 + s*(x/4h²-u1)) // This is also // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j gfpSub(t, v, &c.x) // t7 gfpMul(t4, s1, j) // t8 gfpDouble(t6, t4) // t9 gfpMul(t4, r, t) // t10 gfpSub(&c.y, t4, t6) // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 gfpAdd(t, &a.z, &b.z) // t11 gfpSqr(t4, t, 1) // t12 gfpSub(t, t4, z12) // t13 gfpSub(t4, t, z22) // t14 gfpMul(&c.z, t4, h) return pointEq }