mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-26 04:06:18 +08:00
cipher/hctr: optimization with GCM GF128 method
This commit is contained in:
parent
9d467f8051
commit
e5effb8bb9
@ -3,12 +3,28 @@ package cipher_test
|
|||||||
import (
|
import (
|
||||||
"crypto/aes"
|
"crypto/aes"
|
||||||
"crypto/cipher"
|
"crypto/cipher"
|
||||||
|
"crypto/rand"
|
||||||
|
"io"
|
||||||
"testing"
|
"testing"
|
||||||
|
|
||||||
smcipher "github.com/emmansun/gmsm/cipher"
|
smcipher "github.com/emmansun/gmsm/cipher"
|
||||||
"github.com/emmansun/gmsm/sm4"
|
"github.com/emmansun/gmsm/sm4"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
func BenchmarkSM4HCTREncrypt1K(b *testing.B) {
|
||||||
|
var key [16]byte
|
||||||
|
var tweak [32]byte
|
||||||
|
c, _ := sm4.NewCipher(key[:])
|
||||||
|
io.ReadFull(rand.Reader, tweak[:])
|
||||||
|
hctr, _ := smcipher.NewHCTR(c, tweak[:16], tweak[16:])
|
||||||
|
buf := make([]byte, 1024)
|
||||||
|
b.SetBytes(int64(len(buf)))
|
||||||
|
b.ResetTimer()
|
||||||
|
for i := 0; i < b.N; i++ {
|
||||||
|
hctr.Encrypt(buf, buf)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
func benchmarkECBEncrypt1K(b *testing.B, block cipher.Block) {
|
func benchmarkECBEncrypt1K(b *testing.B, block cipher.Block) {
|
||||||
buf := make([]byte, 1024)
|
buf := make([]byte, 1024)
|
||||||
b.SetBytes(int64(len(buf)))
|
b.SetBytes(int64(len(buf)))
|
||||||
|
172
cipher/hctr.go
172
cipher/hctr.go
@ -37,6 +37,58 @@ type LengthPreservingMode interface {
|
|||||||
Decrypt(dst, src []byte)
|
Decrypt(dst, src []byte)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// hctrFieldElement represents a value in GF(2¹²⁸). In order to reflect the HCTR
|
||||||
|
// standard and make binary.BigEndian suitable for marshaling these values, the
|
||||||
|
// bits are stored in big endian order. For example:
|
||||||
|
// the coefficient of x⁰ can be obtained by v.low >> 63.
|
||||||
|
// the coefficient of x⁶³ can be obtained by v.low & 1.
|
||||||
|
// the coefficient of x⁶⁴ can be obtained by v.high >> 63.
|
||||||
|
// the coefficient of x¹²⁷ can be obtained by v.high & 1.
|
||||||
|
type hctrFieldElement struct {
|
||||||
|
low, high uint64
|
||||||
|
}
|
||||||
|
|
||||||
|
// reverseBits reverses the order of the bits of 4-bit number in i.
|
||||||
|
func reverseBits(i int) int {
|
||||||
|
i = ((i << 2) & 0xc) | ((i >> 2) & 0x3)
|
||||||
|
i = ((i << 1) & 0xa) | ((i >> 1) & 0x5)
|
||||||
|
return i
|
||||||
|
}
|
||||||
|
|
||||||
|
// hctrAdd adds two elements of GF(2¹²⁸) and returns the sum.
|
||||||
|
func hctrAdd(x, y *hctrFieldElement) hctrFieldElement {
|
||||||
|
// Addition in a characteristic 2 field is just XOR.
|
||||||
|
return hctrFieldElement{x.low ^ y.low, x.high ^ y.high}
|
||||||
|
}
|
||||||
|
|
||||||
|
// hctrDouble returns the result of doubling an element of GF(2¹²⁸).
|
||||||
|
func hctrDouble(x *hctrFieldElement) (double hctrFieldElement) {
|
||||||
|
msbSet := x.high&1 == 1
|
||||||
|
|
||||||
|
// Because of the bit-ordering, doubling is actually a right shift.
|
||||||
|
double.high = x.high >> 1
|
||||||
|
double.high |= x.low << 63
|
||||||
|
double.low = x.low >> 1
|
||||||
|
|
||||||
|
// If the most-significant bit was set before shifting then it,
|
||||||
|
// conceptually, becomes a term of x^128. This is greater than the
|
||||||
|
// irreducible polynomial so the result has to be reduced. The
|
||||||
|
// irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to
|
||||||
|
// eliminate the term at x^128 which also means subtracting the other
|
||||||
|
// four terms. In characteristic 2 fields, subtraction == addition ==
|
||||||
|
// XOR.
|
||||||
|
if msbSet {
|
||||||
|
double.low ^= 0xe100000000000000
|
||||||
|
}
|
||||||
|
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
var hctrReductionTable = []uint16{
|
||||||
|
0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
|
||||||
|
0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
|
||||||
|
}
|
||||||
|
|
||||||
// hctr represents a Varaible-Input-Length enciphering mode with a specific block cipher,
|
// hctr represents a Varaible-Input-Length enciphering mode with a specific block cipher,
|
||||||
// and specific tweak and a hash key. See
|
// and specific tweak and a hash key. See
|
||||||
// https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288
|
// https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288
|
||||||
@ -44,7 +96,9 @@ type LengthPreservingMode interface {
|
|||||||
type hctr struct {
|
type hctr struct {
|
||||||
cipher _cipher.Block
|
cipher _cipher.Block
|
||||||
tweak [blockSize]byte
|
tweak [blockSize]byte
|
||||||
hkey [blockSize]byte
|
// productTable contains the first sixteen powers of the hash key.
|
||||||
|
// However, they are in bit reversed order.
|
||||||
|
productTable [16]hctrFieldElement
|
||||||
}
|
}
|
||||||
|
|
||||||
// NewHCTR returns a [LengthPreservingMode] which encrypts/decrypts useing the given [Block]
|
// NewHCTR returns a [LengthPreservingMode] which encrypts/decrypts useing the given [Block]
|
||||||
@ -55,72 +109,95 @@ func NewHCTR(cipher _cipher.Block, tweak, hkey []byte) (LengthPreservingMode, er
|
|||||||
}
|
}
|
||||||
c := &hctr{}
|
c := &hctr{}
|
||||||
c.cipher = cipher
|
c.cipher = cipher
|
||||||
copy(c.hkey[:], hkey)
|
|
||||||
copy(c.tweak[:], tweak)
|
copy(c.tweak[:], tweak)
|
||||||
|
// We precompute 16 multiples of |key|. However, when we do lookups
|
||||||
|
// into this table we'll be using bits from a field element and
|
||||||
|
// therefore the bits will be in the reverse order. So normally one
|
||||||
|
// would expect, say, 4*key to be in index 4 of the table but due to
|
||||||
|
// this bit ordering it will actually be in index 0010 (base 2) = 2.
|
||||||
|
x := hctrFieldElement{
|
||||||
|
binary.BigEndian.Uint64(hkey[:8]),
|
||||||
|
binary.BigEndian.Uint64(hkey[8:blockSize]),
|
||||||
|
}
|
||||||
|
c.productTable[reverseBits(1)] = x
|
||||||
|
|
||||||
|
for i := 2; i < 16; i += 2 {
|
||||||
|
c.productTable[reverseBits(i)] = hctrDouble(&c.productTable[reverseBits(i/2)])
|
||||||
|
c.productTable[reverseBits(i+1)] = hctrAdd(&c.productTable[reverseBits(i)], &x)
|
||||||
|
}
|
||||||
return c, nil
|
return c, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func _mul2(v *[blockSize]byte) {
|
// mul sets y to y*H, where H is the GCM key, fixed during NewHCTR.
|
||||||
var carryIn byte
|
func (h *hctr) mul(y *hctrFieldElement) {
|
||||||
for j := range v {
|
var z hctrFieldElement
|
||||||
carryOut := (v[j] << 7) & 0x80
|
|
||||||
v[j] = (v[j] >> 1) + carryIn
|
|
||||||
carryIn = carryOut
|
|
||||||
}
|
|
||||||
if carryIn != 0 {
|
|
||||||
v[0] ^= 0xE1 // 1<<7 | 1<<6 | 1<<5 | 1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// mul sets y to y*hkey.
|
for i := 0; i < 2; i++ {
|
||||||
func (h *hctr) mul(y *[blockSize]byte) {
|
word := y.high
|
||||||
var z [blockSize]byte
|
if i == 1 {
|
||||||
for _, i := range h.hkey {
|
word = y.low
|
||||||
for k := 0; k < 8; k++ {
|
}
|
||||||
if (i>>(7-k))&1 == 1 {
|
|
||||||
subtle.XORBytes(z[:], z[:], y[:])
|
// Multiplication works by multiplying z by 16 and adding in
|
||||||
}
|
// one of the precomputed multiples of hash key.
|
||||||
_mul2(y)
|
for j := 0; j < 64; j += 4 {
|
||||||
|
msw := z.high & 0xf
|
||||||
|
z.high >>= 4
|
||||||
|
z.high |= z.low << 60
|
||||||
|
z.low >>= 4
|
||||||
|
z.low ^= uint64(hctrReductionTable[msw]) << 48
|
||||||
|
|
||||||
|
// the values in |table| are ordered for
|
||||||
|
// little-endian bit positions. See the comment
|
||||||
|
// in NewGCMWithNonceSize.
|
||||||
|
t := &h.productTable[word&0xf]
|
||||||
|
|
||||||
|
z.low ^= t.low
|
||||||
|
z.high ^= t.high
|
||||||
|
word >>= 4
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
copy(y[:], z[:])
|
|
||||||
|
*y = z
|
||||||
|
}
|
||||||
|
|
||||||
|
func (h *hctr) updateBlock(block []byte, y *hctrFieldElement) {
|
||||||
|
y.low ^= binary.BigEndian.Uint64(block)
|
||||||
|
y.high ^= binary.BigEndian.Uint64(block[8:blockSize])
|
||||||
|
h.mul(y)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Universal Hash Function.
|
// Universal Hash Function.
|
||||||
// Chapter 3.3 in https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288.
|
// Chapter 3.3 in https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288.
|
||||||
func (h *hctr) uhash(m []byte, dst *[blockSize]byte) {
|
func (h *hctr) uhash(m []byte, out *[blockSize]byte) {
|
||||||
for k := 0; k < blockSize; k++ {
|
var y hctrFieldElement
|
||||||
dst[k] = 0
|
|
||||||
}
|
|
||||||
msg := m
|
msg := m
|
||||||
|
// update blocks
|
||||||
for len(msg) >= blockSize {
|
for len(msg) >= blockSize {
|
||||||
subtle.XORBytes(dst[:], dst[:], msg[:blockSize])
|
h.updateBlock(msg, &y)
|
||||||
h.mul(dst)
|
|
||||||
msg = msg[blockSize:]
|
msg = msg[blockSize:]
|
||||||
}
|
}
|
||||||
var v [blockSize]byte
|
// update partial block & tweak
|
||||||
if len(msg) > 0 {
|
if len(msg) > 0 {
|
||||||
copy(v[:], msg)
|
var partialBlock [blockSize]byte
|
||||||
copy(v[len(msg):], h.tweak[:])
|
copy(partialBlock[:], msg)
|
||||||
subtle.XORBytes(dst[:], dst[:], v[:])
|
copy(partialBlock[len(msg):], h.tweak[:])
|
||||||
h.mul(dst)
|
h.updateBlock(partialBlock[:], &y)
|
||||||
copy(v[:], h.tweak[len(msg):])
|
|
||||||
|
copy(partialBlock[:], h.tweak[len(msg):])
|
||||||
for i := len(msg); i < blockSize; i++ {
|
for i := len(msg); i < blockSize; i++ {
|
||||||
v[i] = 0
|
partialBlock[i] = 0
|
||||||
}
|
|
||||||
subtle.XORBytes(dst[:], dst[:], v[:])
|
|
||||||
h.mul(dst)
|
|
||||||
for i := 0; i < len(msg); i++ {
|
|
||||||
v[i] = 0
|
|
||||||
}
|
}
|
||||||
|
h.updateBlock(partialBlock[:], &y)
|
||||||
} else {
|
} else {
|
||||||
subtle.XORBytes(dst[:], dst[:], h.tweak[:])
|
h.updateBlock(h.tweak[:], &y)
|
||||||
h.mul(dst)
|
|
||||||
}
|
}
|
||||||
// (|M|)₂
|
// update bit string length (|M|)₂
|
||||||
binary.BigEndian.PutUint64(v[8:], uint64(len(m)+blockSize)<<3)
|
y.high ^= uint64(len(m)+blockSize) * 8
|
||||||
subtle.XORBytes(dst[:], dst[:], v[:])
|
h.mul(&y)
|
||||||
h.mul(dst)
|
// output result
|
||||||
|
binary.BigEndian.PutUint64(out[:], y.low)
|
||||||
|
binary.BigEndian.PutUint64(out[8:], y.high)
|
||||||
}
|
}
|
||||||
|
|
||||||
func (h *hctr) Encrypt(ciphertext, plaintext []byte) {
|
func (h *hctr) Encrypt(ciphertext, plaintext []byte) {
|
||||||
@ -135,7 +212,6 @@ func (h *hctr) Encrypt(ciphertext, plaintext []byte) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
var z1, z2 [blockSize]byte
|
var z1, z2 [blockSize]byte
|
||||||
|
|
||||||
// a) z1 generation
|
// a) z1 generation
|
||||||
h.uhash(plaintext[blockSize:], &z1)
|
h.uhash(plaintext[blockSize:], &z1)
|
||||||
subtle.XORBytes(z1[:], z1[:], plaintext[:blockSize])
|
subtle.XORBytes(z1[:], z1[:], plaintext[:blockSize])
|
||||||
|
Loading…
x
Reference in New Issue
Block a user