diff --git a/sm2/sm2_keyexchange_sample_test.go b/sm2/sm2_keyexchange_sample_test.go new file mode 100644 index 0000000..6f70312 --- /dev/null +++ b/sm2/sm2_keyexchange_sample_test.go @@ -0,0 +1,394 @@ +package sm2 + +import ( + "bytes" + "crypto/ecdsa" + "crypto/elliptic" + "encoding/hex" + "errors" + "math/big" + "testing" + + "github.com/emmansun/gmsm/sm3" +) + +type CurveParams struct { + elliptic.CurveParams + A *big.Int // the constant of the curve equation +} + +// polynomial returns x³ +ax + b. +func (curve *CurveParams) polynomial(x *big.Int) *big.Int { + x3 := new(big.Int).Mul(x, x) + x3.Mul(x3, x) + + aX := new(big.Int).Mul(curve.A, x) + + x3.Add(x3, aX) + x3.Add(x3, curve.B) + x3.Mod(x3, curve.P) + + return x3 +} + +func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool { + if x.Sign() < 0 || x.Cmp(curve.P) >= 0 || + y.Sign() < 0 || y.Cmp(curve.P) >= 0 { + return false + } + + // y² = x³ + ax + b + y2 := new(big.Int).Mul(y, y) + y2.Mod(y2, curve.P) + + return curve.polynomial(x).Cmp(y2) == 0 +} + +// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and +// y are zero, it assumes that they represent the point at infinity because (0, +// 0) is not on the any of the curves handled here. +func zForAffine(x, y *big.Int) *big.Int { + z := new(big.Int) + if x.Sign() != 0 || y.Sign() != 0 { + z.SetInt64(1) + } + return z +} + +// affineFromJacobian reverses the Jacobian transform. See the comment at the +// top of the file. If the point is ∞ it returns 0, 0. +func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { + if z.Sign() == 0 { + return new(big.Int), new(big.Int) + } + + zinv := new(big.Int).ModInverse(z, curve.P) + zinvsq := new(big.Int).Mul(zinv, zinv) + + xOut = new(big.Int).Mul(x, zinvsq) + xOut.Mod(xOut, curve.P) + zinvsq.Mul(zinvsq, zinv) + yOut = new(big.Int).Mul(y, zinvsq) + yOut.Mod(yOut, curve.P) + return +} + +func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { + z1 := zForAffine(x1, y1) + z2 := zForAffine(x2, y2) + return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2)) +} + +// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and +// (x2, y2, z2) and returns their sum, also in Jacobian form. +func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { + // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl + x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int) + if z1.Sign() == 0 { + x3.Set(x2) + y3.Set(y2) + z3.Set(z2) + return x3, y3, z3 + } + if z2.Sign() == 0 { + x3.Set(x1) + y3.Set(y1) + z3.Set(z1) + return x3, y3, z3 + } + + z1z1 := new(big.Int).Mul(z1, z1) + z1z1.Mod(z1z1, curve.P) + z2z2 := new(big.Int).Mul(z2, z2) + z2z2.Mod(z2z2, curve.P) + + u1 := new(big.Int).Mul(x1, z2z2) + u1.Mod(u1, curve.P) + u2 := new(big.Int).Mul(x2, z1z1) + u2.Mod(u2, curve.P) + h := new(big.Int).Sub(u2, u1) + xEqual := h.Sign() == 0 + if h.Sign() == -1 { + h.Add(h, curve.P) + } + i := new(big.Int).Lsh(h, 1) + i.Mul(i, i) + j := new(big.Int).Mul(h, i) + + s1 := new(big.Int).Mul(y1, z2) + s1.Mul(s1, z2z2) + s1.Mod(s1, curve.P) + s2 := new(big.Int).Mul(y2, z1) + s2.Mul(s2, z1z1) + s2.Mod(s2, curve.P) + r := new(big.Int).Sub(s2, s1) + if r.Sign() == -1 { + r.Add(r, curve.P) + } + yEqual := r.Sign() == 0 + if xEqual && yEqual { + return curve.doubleJacobian(x1, y1, z1) + } + r.Lsh(r, 1) + v := new(big.Int).Mul(u1, i) + + x3.Set(r) + x3.Mul(x3, x3) + x3.Sub(x3, j) + x3.Sub(x3, v) + x3.Sub(x3, v) + x3.Mod(x3, curve.P) + + y3.Set(r) + v.Sub(v, x3) + y3.Mul(y3, v) + s1.Mul(s1, j) + s1.Lsh(s1, 1) + y3.Sub(y3, s1) + y3.Mod(y3, curve.P) + + z3.Add(z1, z2) + z3.Mul(z3, z3) + z3.Sub(z3, z1z1) + z3.Sub(z3, z2z2) + z3.Mul(z3, h) + z3.Mod(z3, curve.P) + + return x3, y3, z3 +} + +func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { + z1 := zForAffine(x1, y1) + return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) +} + +// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and +// returns its double, also in Jacobian form. +func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { + // See https://hyperelliptic.org/EFD/g1p/data/shortw/jacobian/doubling/dbl-2007-bl + xx := new(big.Int).Mul(x, x) + xx.Mod(xx, curve.P) + yy := new(big.Int).Mul(y, y) + yy.Mod(yy, curve.P) + yyyy := new(big.Int).Mul(yy, yy) + yyyy.Mod(yyyy, curve.P) + zz := new(big.Int).Mul(z, z) + zz.Mod(zz, curve.P) + + s := new(big.Int).Add(x, yy) + s.Mul(s, s) + s.Sub(s, xx) + if s.Sign() == -1 { + s.Add(s, curve.P) + } + s.Sub(s, yyyy) + if s.Sign() == -1 { + s.Add(s, curve.P) + } + s.Lsh(s, 1) + s.Mod(s, curve.P) + + m := new(big.Int).Mul(xx, big.NewInt(3)) + m.Mod(m, curve.P) + tmp := new(big.Int).Mul(zz, zz) + tmp.Mul(tmp, curve.A) + tmp.Mod(tmp, curve.P) + m.Add(m, tmp) + m.Mod(m, curve.P) + + t := new(big.Int).Mul(m, m) + t.Sub(t, s) + if t.Sign() == -1 { + t.Add(t, curve.P) + } + t.Sub(t, s) + if t.Sign() == -1 { + t.Add(t, curve.P) + } + t.Mod(t, curve.P) + x3 := t + + y3 := new(big.Int).Sub(s, t) + y3.Mul(y3, m) + yyyy.Lsh(yyyy, 3) + y3.Sub(y3, yyyy) + if y3.Sign() == -1 { + y3.Add(y3, curve.P) + } + y3.Mod(y3, curve.P) + + z3 := new(big.Int).Add(y, z) + z3.Mul(z3, z3) + z3.Sub(z3, yy) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Sub(z3, zz) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Mod(z3, curve.P) + + return x3, y3, z3 +} + +func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { + Bz := new(big.Int).SetInt64(1) + x, y, z := new(big.Int), new(big.Int), new(big.Int) + + for _, byte := range k { + for bitNum := 0; bitNum < 8; bitNum++ { + x, y, z = curve.doubleJacobian(x, y, z) + if byte&0x80 == 0x80 { + x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) + } + byte <<= 1 + } + } + + return curve.affineFromJacobian(x, y, z) +} + +func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { + return curve.ScalarMult(curve.Gx, curve.Gy, k) +} + +func bigFromHex(s string) *big.Int { + b, ok := new(big.Int).SetString(s, 16) + if !ok { + panic("sm2/elliptic: internal error: invalid encoding") + } + return b +} + +var sampleParams = &CurveParams{ + elliptic.CurveParams{ + Name: "sampleCurve", + BitSize: 256, + P: bigFromHex("8542D69E4C044F18E8B92435BF6FF7DE457283915C45517D722EDB8B08F1DFC3"), + N: bigFromHex("8542D69E4C044F18E8B92435BF6FF7DD297720630485628D5AE74EE7C32E79B7"), + B: bigFromHex("63E4C6D3B23B0C849CF84241484BFE48F61D59A5B16BA06E6E12D1DA27C5249A"), + Gx: bigFromHex("421DEBD61B62EAB6746434EBC3CC315E32220B3BADD50BDC4C4E6C147FEDD43D"), + Gy: bigFromHex("0680512BCBB42C07D47349D2153B70C4E5D7FDFCBFA36EA1A85841B9E46E09A2"), + }, + bigFromHex("787968B4FA32C3FD2417842E73BBFEFF2F3C848B6831D7E0EC65228B3937E498"), +} + +func TestPublicKey(t *testing.T) { + d := bigFromHex("6FCBA2EF9AE0AB902BC3BDE3FF915D44BA4CC78F88E2F8E7F8996D3B8CCEEDEE") + x, y := sampleParams.ScalarBaseMult(d.Bytes()) + if hex.EncodeToString(x.Bytes()) != "3099093bf3c137d8fcbbcdf4a2ae50f3b0f216c3122d79425fe03a45dbfe1655" || + hex.EncodeToString(y.Bytes()) != "3df79e8dac1cf0ecbaa2f2b49d51a4b387f2efaf482339086a27a8e05baed98b" { + t.FailNow() + } + d = bigFromHex("5E35D7D3F3C54DBAC72E61819E730B019A84208CA3A35E4C2E353DFCCB2A3B53") + x, y = sampleParams.ScalarBaseMult(d.Bytes()) + if hex.EncodeToString(x.Bytes()) != "245493d446c38d8cc0f118374690e7df633a8a4bfb3329b5ece604b2b4f37f43" || + hex.EncodeToString(y.Bytes()) != "53c0869f4b9e17773de68fec45e14904e0dea45bf6cecf9918c85ea047c60a4c" { + t.FailNow() + } +} + +// calculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA) +func calculateSampleZA(pub *ecdsa.PublicKey, a *big.Int, uid []byte) ([]byte, error) { + uidLen := len(uid) + if uidLen >= 0x2000 { + return nil, errors.New("sm2: the uid is too long") + } + entla := uint16(uidLen) << 3 + md := sm3.New() + md.Write([]byte{byte(entla >> 8), byte(entla)}) + if uidLen > 0 { + md.Write(uid) + } + md.Write(toBytes(pub.Curve, a)) + md.Write(toBytes(pub.Curve, pub.Params().B)) + md.Write(toBytes(pub.Curve, pub.Params().Gx)) + md.Write(toBytes(pub.Curve, pub.Params().Gy)) + md.Write(toBytes(pub.Curve, pub.X)) + md.Write(toBytes(pub.Curve, pub.Y)) + return md.Sum(nil), nil +} + +func TestKeyExchangeRealSample(t *testing.T) { + initiatorUID := []byte("ALICE123@YAHOO.COM") + responderUID := []byte("BILL456@YAHOO.COM") + kenLen := 16 + + priv1 := new(PrivateKey) + priv1.D = bigFromHex("6FCBA2EF9AE0AB902BC3BDE3FF915D44BA4CC78F88E2F8E7F8996D3B8CCEEDEE") + priv1.Curve = sampleParams + priv1.X, priv1.Y = priv1.Curve.ScalarBaseMult(priv1.D.Bytes()) + + priv2 := new(PrivateKey) + priv2.D = bigFromHex("5E35D7D3F3C54DBAC72E61819E730B019A84208CA3A35E4C2E353DFCCB2A3B53") + priv2.Curve = sampleParams + priv2.X, priv2.Y = priv2.Curve.ScalarBaseMult(priv2.D.Bytes()) + + initiator, err := NewKeyExchange(priv1, &priv2.PublicKey, initiatorUID, responderUID, kenLen, true) + if err != nil { + t.Fatal(err) + } + // overwrite ZA, due to different A + initiator.z, _ = calculateSampleZA(&priv1.PublicKey, sampleParams.A, initiatorUID) + initiator.peerZ, _ = calculateSampleZA(&priv2.PublicKey, sampleParams.A, responderUID) + + if hex.EncodeToString(priv1.X.Bytes()) != "3099093bf3c137d8fcbbcdf4a2ae50f3b0f216c3122d79425fe03a45dbfe1655" || + hex.EncodeToString(priv1.Y.Bytes()) != "3df79e8dac1cf0ecbaa2f2b49d51a4b387f2efaf482339086a27a8e05baed98b" { + t.Fatalf("unexpected public key PA") + } + if hex.EncodeToString(initiator.z) != "e4d1d0c3ca4c7f11bc8ff8cb3f4c02a78f108fa098e51a668487240f75e20f31" { + t.Fatalf("unexpected ZA") + } + if hex.EncodeToString(initiator.peerZ) != "6b4b6d0e276691bd4a11bf72f4fb501ae309fdacb72fa6cc336e6656119abd67" { + t.Fatalf("unexpected ZB") + } + + responder, err := NewKeyExchange(priv2, &priv1.PublicKey, responderUID, initiatorUID, kenLen, true) + if err != nil { + t.Fatalf("unexpected public key PB") + } + responder.z, _ = calculateSampleZA(&priv2.PublicKey, sampleParams.A, responderUID) + responder.peerZ, _ = calculateSampleZA(&priv1.PublicKey, sampleParams.A, initiatorUID) + if hex.EncodeToString(priv2.X.Bytes()) != "245493d446c38d8cc0f118374690e7df633a8a4bfb3329b5ece604b2b4f37f43" || + hex.EncodeToString(priv2.Y.Bytes()) != "53c0869f4b9e17773de68fec45e14904e0dea45bf6cecf9918c85ea047c60a4c" { + t.Fatalf("unexpected public key PB") + } + defer func() { + initiator.Destroy() + responder.Destroy() + }() + rA := bigFromHex("83A2C9C8B96E5AF70BD480B472409A9A327257F1EBB73F5B073354B248668563") + initKeyExchange(initiator, rA) + if hex.EncodeToString(initiator.secret.X.Bytes()) != "6cb5633816f4dd560b1dec458310cbcc6856c09505324a6d23150c408f162bf0" || + hex.EncodeToString(initiator.secret.Y.Bytes()) != "0d6fcf62f1036c0a1b6daccf57399223a65f7d7bf2d9637e5bbbeb857961bf1a" { + t.Fatalf("unexpected RA") + } + + rB := bigFromHex("33FE21940342161C55619C4A0C060293D543C80AF19748CE176D83477DE71C80") + RB, s2, _ := respondKeyExchange(responder, initiator.secret, rB) + if hex.EncodeToString(RB.X.Bytes()) != "1799b2a2c778295300d9a2325c686129b8f2b5337b3dcf4514e8bbc19d900ee5" || + hex.EncodeToString(RB.Y.Bytes()) != "54c9288c82733efdf7808ae7f27d0e732f7c73a7d9ac98b7d8740a91d0db3cf4" { + t.Fatalf("unexpected RB") + } + if hex.EncodeToString(s2) != "284c8f198f141b502e81250f1581c7e9eeb4ca6990f9e02df388b45471f5bc5c" { + t.Fatalf("unexpected S2") + } + key1, s1, err := initiator.ConfirmResponder(RB, s2) + if err != nil { + t.Fatal(err) + } + if hex.EncodeToString(s1) != "23444daf8ed7534366cb901c84b3bdbb63504f4065c1116c91a4c00697e6cf7a" { + t.Fatalf("unexpected S1") + } + key2, err := responder.ConfirmInitiator(s1) + if err != nil { + t.Fatal(err) + } + if !bytes.Equal(key1, key2) { + t.Errorf("got different key") + } + if !bytes.Equal(key1, hexDecode(t, "55B0AC62A6B927BA23703832C853DED4")) { + t.Errorf("got unexpected keying data %v\n", hex.EncodeToString(key1)) + } +} diff --git a/sm2/sm2_keyexchange_test.go b/sm2/sm2_keyexchange_test.go index 8ede3d2..7678a19 100644 --- a/sm2/sm2_keyexchange_test.go +++ b/sm2/sm2_keyexchange_test.go @@ -70,7 +70,7 @@ func TestKeyExchangeSample(t *testing.T) { if err != nil { t.Fatal(err) } - responder, err := NewKeyExchange(priv2, &priv1.PublicKey, responderUID, initiatorUID, 48, true) + responder, err := NewKeyExchange(priv2, &priv1.PublicKey, responderUID, initiatorUID, kenLen, true) if err != nil { t.Fatal(err) }