sm9/bn256: curvePointDoubleComplete asm

This commit is contained in:
emmansun 2023-07-22 17:29:19 +08:00
parent 2d615c7f94
commit b21a234037
6 changed files with 287 additions and 275 deletions

View File

@ -26,6 +26,9 @@ var p2 = [4]uint64{0xe56f9b27e351457d, 0x21f2934b1a7aeedb, 0xd603ab4ff58ec745, 0
// np is the negative inverse of p, mod 2^256.
var np = [4]uint64{0x892bc42c2f2ee42b, 0x181ae39613c8dbaf, 0x966a4b291522b137, 0xafd2bac5558a13b3}
// b3 is 15
var b3 = [4]uint64{0x2dd845ba5a554cbf, 0x3719ead6d3ea67f6, 0x71b2f270db49a754, 0x0cbfffffc8934e29}
// rN1 is R^-1 where R = 2^256 mod p.
var rN1 = &gfP{0x0a1c7970e5df544d, 0xe74504e9a96b56cc, 0xcda02d92d4d62924, 0x7d2bc576fdf597d1}

View File

@ -162,6 +162,159 @@ func (e *curvePoint) Equal(other *curvePoint) bool {
// Below methods are POC yet, the line add/double functions are still based on
// Jacobian coordination.
func (c *curvePoint) Add(p1, p2 *curvePoint) {
curvePointAddComplete(c, p1, p2)
}
func (c *curvePoint) AddComplete(p1, p2 *curvePoint) {
curvePointAddComplete(c, p1, p2)
}
func (c *curvePoint) Double(p *curvePoint) {
curvePointDoubleComplete(c, p)
}
func (c *curvePoint) DoubleComplete(p *curvePoint) {
curvePointDoubleComplete(c, p)
}
// MakeAffine reverses the Projective transform.
// A = 1/Z1
// X3 = A*X1
// Y3 = A*Y1
// Z3 = 1
func (c *curvePoint) MakeAffine() {
// TODO: do we need to change it to constant-time implementation?
if c.z.Equal(one) == 1 {
return
} else if c.z.Equal(zero) == 1 {
c.x.Set(zero)
c.y.Set(one)
c.t.Set(zero)
return
}
zInv := &gfP{}
zInv.Invert(&c.z)
gfpMul(&c.x, &c.x, zInv)
gfpMul(&c.y, &c.y, zInv)
c.z.Set(one)
c.t.Set(one)
}
func (c *curvePoint) AffineFromProjective() {
c.MakeAffine()
}
func curvePointDouble(c, a *curvePoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A, B, C := &gfP{}, &gfP{}, &gfP{}
gfpSqr(A, &a.x, 1)
gfpSqr(B, &a.y, 1)
gfpSqr(C, B, 1)
t := &gfP{}
gfpAdd(B, &a.x, B)
gfpSqr(t, B, 1)
gfpSub(B, t, A)
gfpSub(t, B, C)
d, e := &gfP{}, &gfP{}
gfpDouble(d, t)
gfpDouble(B, A)
gfpAdd(e, B, A)
gfpSqr(A, e, 1)
gfpDouble(B, d)
gfpSub(&c.x, A, B)
gfpMul(&c.z, &a.y, &a.z)
gfpDouble(&c.z, &c.z)
gfpDouble(B, C)
gfpDouble(t, B)
gfpDouble(B, t)
gfpSub(&c.y, d, &c.x)
gfpMul(t, e, &c.y)
gfpSub(&c.y, t, B)
}
func curvePointAdd(c, a, b *curvePoint) int {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
var pointEq int
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z12, z22 := &gfP{}, &gfP{}
gfpSqr(z12, &a.z, 1)
gfpSqr(z22, &b.z, 1)
u1, u2 := &gfP{}, &gfP{}
gfpMul(u1, &a.x, z22)
gfpMul(u2, &b.x, z12)
t, s1 := &gfP{}, &gfP{}
gfpMul(t, &b.z, z22)
gfpMul(s1, &a.y, t)
s2 := &gfP{}
gfpMul(t, &a.z, z12)
gfpMul(s2, &b.y, t)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := &gfP{}
gfpSub(h, u2, u1)
gfpDouble(t, h)
// i = 4h²
i := &gfP{}
gfpSqr(i, t, 1)
// j = 4h³
j := &gfP{}
gfpMul(j, h, i)
gfpSub(t, s2, s1)
pointEq = h.Equal(zero) & t.Equal(zero)
r := &gfP{}
gfpDouble(r, t)
v := &gfP{}
gfpMul(v, u1, i)
// t4 = 4(s2-s1)²
t4, t6 := &gfP{}, &gfP{}
gfpSqr(t4, r, 1)
gfpDouble(t, v)
gfpSub(t6, t4, j)
gfpSub(&c.x, t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
gfpSub(t, v, &c.x) // t7
gfpMul(t4, s1, j) // t8
gfpDouble(t6, t4) // t9
gfpMul(t4, r, t) // t10
gfpSub(&c.y, t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
gfpAdd(t, &a.z, &b.z) // t11
gfpSqr(t4, t, 1) // t12
gfpSub(t, t4, z12) // t13
gfpSub(t4, t, z22) // t14
gfpMul(&c.z, t4, h)
return pointEq
}
func curvePointAddComplete(c, p1, p2 *curvePoint) {
// Complete addition formula for a = 0 from "Complete addition formulas for
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §3.2.
// Algorithm 7: Complete, projective point addition for prime order j-invariant 0 short Weierstrass curves.
@ -205,68 +358,3 @@ func (c *curvePoint) Add(p1, p2 *curvePoint) {
c.y.Set(y3)
c.z.Set(z3)
}
func (c *curvePoint) AddComplete(p1, p2 *curvePoint) {
c.Add(p1, p2)
}
func (c *curvePoint) Double(p *curvePoint) {
// Complete addition formula for a = 0 from "Complete addition formulas for
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §3.2.
// Algorithm 9: Exception-free point doubling for prime order j-invariant 0 short Weierstrass curves.
t0, t1, t2 := new(gfP), new(gfP), new(gfP)
x3, y3, z3 := new(gfP), new(gfP), new(gfP)
gfpSqr(t0, &p.y, 1) // t0 := Y^2
gfpDouble(z3, t0) // Z3 := t0 + t0
gfpDouble(z3, z3) // Z3 := Z3 + Z3
gfpDouble(z3, z3) // Z3 := Z3 + Z3
gfpMul(t1, &p.y, &p.z) // t1 := YZ
gfpSqr(t2, &p.z, 1) // t0 := Z^2
gfpMul(t2, threeCurveB, t2) // t2 := 3b * t2 = 3bZ^2
gfpMul(x3, t2, z3) // X3 := t2 * Z3
gfpAdd(y3, t0, t2) // Y3 := t0 + t2
gfpMul(z3, t1, z3) // Z3 := t1 * Z3
gfpTriple(t2, t2) // t2 := t2 + t2 + t2
gfpSub(t0, t0, t2) // t0 := t0 - t2
gfpMul(y3, t0, y3) // t0 := t0 * Y3
gfpAdd(y3, x3, y3) // Y3 := X3 + Y3
gfpMul(t1, &p.x, &p.y) // t1 := XY
gfpMul(x3, t0, t1) // X3 := t0 * t1
gfpDouble(x3, x3) // X3 := X3 + X3
c.x.Set(x3)
c.y.Set(y3)
c.z.Set(z3)
}
func (c *curvePoint) DoubleComplete(p *curvePoint) {
c.Double(p)
}
// MakeAffine reverses the Projective transform.
// A = 1/Z1
// X3 = A*X1
// Y3 = A*Y1
// Z3 = 1
func (c *curvePoint) MakeAffine() {
// TODO: do we need to change it to constant-time implementation?
if c.z.Equal(one) == 1 {
return
} else if c.z.Equal(zero) == 1 {
c.x.Set(zero)
c.y.Set(one)
c.t.Set(zero)
return
}
zInv := &gfP{}
zInv.Invert(&c.z)
gfpMul(&c.x, &c.x, zInv)
gfpMul(&c.y, &c.y, zInv)
c.z.Set(one)
c.t.Set(one)
}
func (c *curvePoint) AffineFromProjective() {
c.MakeAffine()
}

View File

@ -1321,19 +1321,19 @@ TEXT ·gfp2SquareU(SB),NOSPLIT,$160-16
#undef rptr
/* ---------------------------------------*/
#define x(off) (32*0 + off)(SP)
#define y(off) (32*1 + off)(SP)
#define z(off) (32*2 + off)(SP)
#define xin(off) (32*0 + off)(SP)
#define yin(off) (32*1 + off)(SP)
#define zin(off) (32*2 + off)(SP)
#define a(off) (32*3 + off)(SP)
#define b(off) (32*4 + off)(SP)
#define c(off) (32*5 + off)(SP)
#define rptr (32*6)(SP)
#define xout(off) (32*3 + off)(SP)
#define yout(off) (32*4 + off)(SP)
#define zout(off) (32*5 + off)(SP)
#define tmp0(off) (32*6 + off)(SP)
#define tmp2(off) (32*7 + off)(SP)
#define rptr (32*8)(SP)
// func curvePointDouble(c, a *curvePoint)
TEXT ·curvePointDouble(SB),NOSPLIT,$224-16
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
// Move input to stack in order to free registers
// func curvePointDoubleComplete(c, a *curvePoint)
TEXT ·curvePointDoubleComplete(SB),NOSPLIT,$288-16
MOVQ res+0(FP), AX
MOVQ in+8(FP), BX
@ -1344,104 +1344,104 @@ TEXT ·curvePointDouble(SB),NOSPLIT,$224-16
MOVOU (16*4)(BX), X4
MOVOU (16*5)(BX), X5
MOVOU X0, x(16*0)
MOVOU X1, x(16*1)
MOVOU X2, y(16*0)
MOVOU X3, y(16*1)
MOVOU X4, z(16*0)
MOVOU X5, z(16*1)
MOVOU X0, xin(16*0)
MOVOU X1, xin(16*1)
MOVOU X2, yin(16*0)
MOVOU X3, yin(16*1)
MOVOU X4, zin(16*0)
MOVOU X5, zin(16*1)
// Store pointer to result
MOVQ AX, rptr
LDacc (y)
LDt (z)
CALL gfpMulInternal(SB)
gfpMulBy2Inline // Z3 = 2*Y1*Z1
LDacc (yin)
CALL gfpSqrInternal(SB) // t0 := Y^2
ST (tmp0)
gfpMulBy2Inline // Z3 := t0 + t0
t2acc
gfpMulBy2Inline // Z3 := Z3 + Z3
t2acc
gfpMulBy2Inline // Z3 := Z3 + Z3
STt (zout)
LDacc (zin)
CALL gfpSqrInternal(SB) // t2 := Z^2
ST (tmp2)
gfpMulBy2Inline
t2acc
gfpMulBy2Inline
t2acc
gfpMulBy2Inline
t2acc
gfpMulBy2Inline
t2acc
LDt (tmp2)
CALL gfpSubInternal(SB) // t2 := 3b * t2
ST (tmp2)
LDt (zout)
CALL gfpMulInternal(SB) // X3 := Z3 * t2
ST (xout)
LDacc (tmp0)
LDt (tmp2)
gfpAddInline // Y3 := t0 + t2
STt (yout)
LDacc (yin)
LDt (zin)
CALL gfpMulInternal(SB) // t1 := YZ
LDt (zout)
CALL gfpMulInternal(SB) // Z3 := t1 * Z3
MOVQ rptr, AX
// Store Z
MOVQ t0, (16*4 + 8*0)(AX)
MOVQ t1, (16*4 + 8*1)(AX)
MOVQ t2, (16*4 + 8*2)(AX)
MOVQ t3, (16*4 + 8*3)(AX)
MOVQ acc4, (16*4 + 8*0)(AX)
MOVQ acc5, (16*4 + 8*1)(AX)
MOVQ acc6, (16*4 + 8*2)(AX)
MOVQ acc7, (16*4 + 8*3)(AX)
LDacc (x)
CALL gfpSqrInternal(SB) // A = X1^2
ST (a)
LDacc (y)
CALL gfpSqrInternal(SB) // B = Y1^2
ST (b)
CALL gfpSqrInternal(SB) // C = B^2
ST (c)
LDacc (x)
LDt (b)
gfpAddInline // X1+B
t2acc
CALL gfpSqrInternal(SB) // (X1+B)^2
LDt (a)
CALL gfpSubInternal(SB)
LDt (c)
CALL gfpSubInternal(SB)
gfpMulBy2Inline // B = D = 2*((X1+B)^2-A-C)
STt (b) // Store D
LDacc (a)
LDacc (tmp2)
gfpMulBy2Inline
LDacc (a)
gfpAddInline // A = E = 3*A
STt (a) // Store E
t2acc
CALL gfpSqrInternal(SB) // F = E^2
LDt (b) // Load D
CALL gfpSubInternal(SB)
LDt (b) // Load D
CALL gfpSubInternal(SB) // X3 = F-2*D
ST (x)
LDacc (tmp2)
gfpAddInline // t2 := t2 + t2 + t2
LDacc (tmp0)
CALL gfpSubInternal(SB) // t0 := t0 - t2
ST (tmp0)
LDt (yout)
CALL gfpMulInternal(SB) // Y3 = t0 * Y3
LDt (xout)
gfpAddInline // Y3 := X3 + Y3
MOVQ rptr, AX
// Store x
MOVQ acc4, (16*0 + 8*0)(AX)
MOVQ acc5, (16*0 + 8*1)(AX)
MOVQ acc6, (16*0 + 8*2)(AX)
MOVQ acc7, (16*0 + 8*3)(AX)
LDacc (c)
gfpMulBy2Inline
t2acc
gfpMulBy2Inline
t2acc
gfpMulBy2Inline // 8*C
STt (c)
LDacc (b) // Load D
LDt (x)
CALL gfpSubInternal(SB) // (D-X3)
LDt (a) // Load E
CALL gfpMulInternal(SB) // E*(D-X3)
LDt (c)
CALL gfpSubInternal(SB) // Y3 = E*(D-X3)-8*C
MOVQ rptr, AX
///////////////////////
MOVQ $0, rptr
// Store y
MOVQ acc4, (16*2 + 8*0)(AX)
MOVQ acc5, (16*2 + 8*1)(AX)
MOVQ acc6, (16*2 + 8*2)(AX)
MOVQ acc7, (16*2 + 8*3)(AX)
MOVQ t0, (16*2 + 8*0)(AX)
MOVQ t1, (16*2 + 8*1)(AX)
MOVQ t2, (16*2 + 8*2)(AX)
MOVQ t3, (16*2 + 8*3)(AX)
LDacc (xin)
LDt (yin)
CALL gfpMulInternal(SB) // t1 := XY
LDt (tmp0)
CALL gfpMulInternal(SB) // X3 := t0 * t1
gfpMulBy2Inline // X3 := X3 + X3
MOVQ rptr, AX
MOVQ $0, rptr
// Store x
MOVQ t0, (16*0 + 8*0)(AX)
MOVQ t1, (16*0 + 8*1)(AX)
MOVQ t2, (16*0 + 8*2)(AX)
MOVQ t3, (16*0 + 8*3)(AX)
RET
#undef x
#undef y
#undef z
#undef a
#undef b
#undef c
#undef xin
#undef yin
#undef zin
#undef xout
#undef yout
#undef zout
#undef tmp0
#undef tmp2
#undef rptr
// gfpIsZero returns 1 in AX if [acc4..acc7] represents zero and zero
@ -1475,6 +1475,7 @@ TEXT gfpIsZero(SB),NOSPLIT,$0
RET
/* ---------------------------------------*/
/*
#define x1in(off) (32*0 + off)(SP)
#define y1in(off) (32*1 + off)(SP)
#define z1in(off) (32*2 + off)(SP)
@ -1651,3 +1652,4 @@ TEXT ·curvePointAdd(SB),0,$680-32
MOVQ AX, ret+24(FP)
RET
*/

View File

@ -26,11 +26,10 @@ func gfp2SquareU(c, a *gfP2)
// Point doubling. Sets res = in + in. in can be the point at infinity.
//
//go:noescape
func curvePointDouble(c, a *curvePoint)
// Point addition. Sets res = in1 + in2. Returns one if the two input points
// were equal and zero otherwise. If in1 or in2 are the point at infinity, res
// and the return value are undefined.
func curvePointDoubleComplete(c, a *curvePoint)
/*
// Point addition. Sets res = in1 + in2. in1 can be same as in2, also can be at infinity.
//
//go:noescape
func curvePointAdd(c, a, b *curvePoint) int
func curvePointAddComplete(c, a, b *curvePoint)
*/

View File

@ -82,112 +82,32 @@ func gfp2SquareU(c, a *gfP2) {
gfp2Copy(c, tmp)
}
func curvePointDouble(c, a *curvePoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A, B, C := &gfP{}, &gfP{}, &gfP{}
gfpSqr(A, &a.x, 1)
gfpSqr(B, &a.y, 1)
gfpSqr(C, B, 1)
func curvePointDoubleComplete(c, p *curvePoint) {
// Complete addition formula for a = 0 from "Complete addition formulas for
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §3.2.
// Algorithm 9: Exception-free point doubling for prime order j-invariant 0 short Weierstrass curves.
t0, t1, t2 := new(gfP), new(gfP), new(gfP)
x3, y3, z3 := new(gfP), new(gfP), new(gfP)
t := &gfP{}
gfpAdd(B, &a.x, B)
gfpSqr(t, B, 1)
gfpSub(B, t, A)
gfpSub(t, B, C)
gfpSqr(t0, &p.y, 1) // t0 := Y^2
gfpDouble(z3, t0) // Z3 := t0 + t0
gfpDouble(z3, z3) // Z3 := Z3 + Z3
gfpDouble(z3, z3) // Z3 := Z3 + Z3
gfpMul(t1, &p.y, &p.z) // t1 := YZ
gfpSqr(t2, &p.z, 1) // t2 := Z^2
gfpMul(t2, threeCurveB, t2) // t2 := 3b * t2 = 3bZ^2
gfpMul(x3, t2, z3) // X3 := t2 * Z3
gfpAdd(y3, t0, t2) // Y3 := t0 + t2
gfpMul(z3, t1, z3) // Z3 := t1 * Z3
gfpTriple(t2, t2) // t2 := t2 + t2 + t2
gfpSub(t0, t0, t2) // t0 := t0 - t2
gfpMul(y3, t0, y3) // Y3 := t0 * Y3
gfpAdd(y3, x3, y3) // Y3 := X3 + Y3
gfpMul(t1, &p.x, &p.y) // t1 := XY
gfpMul(x3, t0, t1) // X3 := t0 * t1
gfpDouble(x3, x3) // X3 := X3 + X3
d, e := &gfP{}, &gfP{}
gfpDouble(d, t)
gfpDouble(B, A)
gfpAdd(e, B, A)
gfpSqr(A, e, 1)
gfpDouble(B, d)
gfpSub(&c.x, A, B)
gfpMul(&c.z, &a.y, &a.z)
gfpDouble(&c.z, &c.z)
gfpDouble(B, C)
gfpDouble(t, B)
gfpDouble(B, t)
gfpSub(&c.y, d, &c.x)
gfpMul(t, e, &c.y)
gfpSub(&c.y, t, B)
}
func curvePointAdd(c, a, b *curvePoint) int {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
var pointEq int
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z12, z22 := &gfP{}, &gfP{}
gfpSqr(z12, &a.z, 1)
gfpSqr(z22, &b.z, 1)
u1, u2 := &gfP{}, &gfP{}
gfpMul(u1, &a.x, z22)
gfpMul(u2, &b.x, z12)
t, s1 := &gfP{}, &gfP{}
gfpMul(t, &b.z, z22)
gfpMul(s1, &a.y, t)
s2 := &gfP{}
gfpMul(t, &a.z, z12)
gfpMul(s2, &b.y, t)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := &gfP{}
gfpSub(h, u2, u1)
gfpDouble(t, h)
// i = 4h²
i := &gfP{}
gfpSqr(i, t, 1)
// j = 4h³
j := &gfP{}
gfpMul(j, h, i)
gfpSub(t, s2, s1)
pointEq = h.Equal(zero) & t.Equal(zero)
r := &gfP{}
gfpDouble(r, t)
v := &gfP{}
gfpMul(v, u1, i)
// t4 = 4(s2-s1)²
t4, t6 := &gfP{}, &gfP{}
gfpSqr(t4, r, 1)
gfpDouble(t, v)
gfpSub(t6, t4, j)
gfpSub(&c.x, t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
gfpSub(t, v, &c.x) // t7
gfpMul(t4, s1, j) // t8
gfpDouble(t6, t4) // t9
gfpMul(t4, r, t) // t10
gfpSub(&c.y, t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
gfpAdd(t, &a.z, &b.z) // t11
gfpSqr(t4, t, 1) // t12
gfpSub(t, t4, z12) // t13
gfpSub(t4, t, z22) // t14
gfpMul(&c.z, t4, h)
return pointEq
c.x.Set(x3)
c.y.Set(y3)
c.z.Set(z3)
}

View File

@ -149,14 +149,14 @@ func (c *twistPoint) Double(p *twistPoint) {
z3.Double(z3) // Z3 := Z3 + Z3
z3.Double(z3) // Z3 := Z3 + Z3
t1.Mul(&p.y, &p.z) // t1 := YZ
t2.Square(&p.z) // t0 := Z^2
t2.Square(&p.z) // t2 := Z^2
t2.Mul(threeTwistB, t2) // t2 := 3b * t2 = 3bZ^2
x3.Mul(t2, z3) // X3 := t2 * Z3
y3.Add(t0, t2) // Y3 := t0 + t2
z3.Mul(t1, z3) // Z3 := t1 * Z3
t2.Triple(t2) // t2 := t2 + t2 + t2
t0.Sub(t0, t2) // t0 := t0 - t2
y3.Mul(t0, y3) // t0 := t0 * Y3
y3.Mul(t0, y3) // Y3 := t0 * Y3
y3.Add(x3, y3) // Y3 := X3 + Y3
t1.Mul(&p.x, &p.y) // t1 := XY
x3.Mul(t0, t1) // X3 := t0 * t1