mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-26 12:16:20 +08:00
sm2: use new implementation, part 1
This commit is contained in:
parent
0136fdcabf
commit
ae9d85d2f0
12
internal/sm2ec/fiat/Dockerfile
Normal file
12
internal/sm2ec/fiat/Dockerfile
Normal file
@ -0,0 +1,12 @@
|
||||
# Copyright 2021 The Go Authors. All rights reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
FROM coqorg/coq:8.13.2
|
||||
|
||||
RUN git clone https://github.com/mit-plv/fiat-crypto && cd fiat-crypto && \
|
||||
git checkout 23d2dbc4ab897d14bde4404f70cd6991635f9c01 && \
|
||||
git submodule update --init --recursive
|
||||
RUN cd fiat-crypto && eval $(opam env) && make -j4 standalone-ocaml SKIP_BEDROCK2=1
|
||||
|
||||
ENV PATH /home/coq/fiat-crypto/src/ExtractionOCaml:$PATH
|
34
internal/sm2ec/fiat/README
Normal file
34
internal/sm2ec/fiat/README
Normal file
@ -0,0 +1,34 @@
|
||||
The code in this package was autogenerated by the fiat-crypto project
|
||||
at version v0.0.9 from a formally verified model, and by the addchain
|
||||
project at a recent tip version.
|
||||
|
||||
docker build -t fiat-crypto:v0.0.9 .
|
||||
go install github.com/mmcloughlin/addchain/cmd/addchain@v0.3.1-0.20211027081849-6a7d3decbe08
|
||||
go run generate.go
|
||||
|
||||
fiat-crypto code comes under the following license.
|
||||
|
||||
Copyright (c) 2015-2020 The fiat-crypto Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY the fiat-crypto authors "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Berkeley Software Design,
|
||||
Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
The authors are listed at
|
||||
|
||||
https://github.com/mit-plv/fiat-crypto/blob/master/AUTHORS
|
277
internal/sm2ec/fiat/generate.go
Normal file
277
internal/sm2ec/fiat/generate.go
Normal file
@ -0,0 +1,277 @@
|
||||
// Copyright 2021 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build ignore
|
||||
// +build ignore
|
||||
|
||||
package main
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"go/format"
|
||||
"io"
|
||||
"log"
|
||||
"os"
|
||||
"os/exec"
|
||||
"text/template"
|
||||
)
|
||||
|
||||
var curves = []struct {
|
||||
Element string
|
||||
Prime string
|
||||
Prefix string
|
||||
FiatType string
|
||||
BytesLen int
|
||||
}{
|
||||
{
|
||||
Element: "SM2P256Element",
|
||||
Prime: "2^256 - 2^224 - 2^96 + 2^64 - 1",
|
||||
Prefix: "sm2p256",
|
||||
FiatType: "[4]uint64",
|
||||
BytesLen: 32,
|
||||
},
|
||||
}
|
||||
|
||||
func main() {
|
||||
t := template.Must(template.New("montgomery").Parse(tmplWrapper))
|
||||
|
||||
tmplAddchainFile, err := os.CreateTemp("", "addchain-template")
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer os.Remove(tmplAddchainFile.Name())
|
||||
if _, err := io.WriteString(tmplAddchainFile, tmplAddchain); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := tmplAddchainFile.Close(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
for _, c := range curves {
|
||||
log.Printf("Generating %s.go...", c.Prefix)
|
||||
f, err := os.Create(c.Prefix + ".go")
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := t.Execute(f, c); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := f.Close(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
log.Printf("Generating %s_fiat64.go...", c.Prefix)
|
||||
cmd := exec.Command("docker", "run", "--rm", "--entrypoint", "word_by_word_montgomery",
|
||||
"fiat-crypto:v0.0.9", "--lang", "Go", "--no-wide-int", "--cmovznz-by-mul",
|
||||
"--relax-primitive-carry-to-bitwidth", "32,64", "--internal-static",
|
||||
"--public-function-case", "camelCase", "--public-type-case", "camelCase",
|
||||
"--private-function-case", "camelCase", "--private-type-case", "camelCase",
|
||||
"--doc-text-before-function-name", "", "--doc-newline-before-package-declaration",
|
||||
"--doc-prepend-header", "Code generated by Fiat Cryptography. DO NOT EDIT.",
|
||||
"--package-name", "fiat", "--no-prefix-fiat", c.Prefix, "64", c.Prime,
|
||||
"mul", "square", "add", "sub", "one", "from_montgomery", "to_montgomery",
|
||||
"selectznz", "to_bytes", "from_bytes")
|
||||
cmd.Stderr = os.Stderr
|
||||
out, err := cmd.Output()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
out, err = format.Source(out)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := os.WriteFile(c.Prefix+"_fiat64.go", out, 0644); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
log.Printf("Generating %s_invert.go...", c.Prefix)
|
||||
f, err = os.CreateTemp("", "addchain-"+c.Prefix)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer os.Remove(f.Name())
|
||||
cmd = exec.Command("addchain", "search", c.Prime+" - 2")
|
||||
cmd.Stderr = os.Stderr
|
||||
cmd.Stdout = f
|
||||
if err := cmd.Run(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := f.Close(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
cmd = exec.Command("addchain", "gen", "-tmpl", tmplAddchainFile.Name(), f.Name())
|
||||
cmd.Stderr = os.Stderr
|
||||
out, err = cmd.Output()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
out = bytes.Replace(out, []byte("Element"), []byte(c.Element), -1)
|
||||
out, err = format.Source(out)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := os.WriteFile(c.Prefix+"_invert.go", out, 0644); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const tmplWrapper = `// Copyright 2021 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Code generated by generate.go. DO NOT EDIT.
|
||||
package fiat
|
||||
import (
|
||||
"crypto/subtle"
|
||||
"errors"
|
||||
)
|
||||
// {{ .Element }} is an integer modulo {{ .Prime }}.
|
||||
//
|
||||
// The zero value is a valid zero element.
|
||||
type {{ .Element }} struct {
|
||||
// Values are represented internally always in the Montgomery domain, and
|
||||
// converted in Bytes and SetBytes.
|
||||
x {{ .Prefix }}MontgomeryDomainFieldElement
|
||||
}
|
||||
const {{ .Prefix }}ElementLen = {{ .BytesLen }}
|
||||
type {{ .Prefix }}UntypedFieldElement = {{ .FiatType }}
|
||||
// One sets e = 1, and returns e.
|
||||
func (e *{{ .Element }}) One() *{{ .Element }} {
|
||||
{{ .Prefix }}SetOne(&e.x)
|
||||
return e
|
||||
}
|
||||
// Equal returns 1 if e == t, and zero otherwise.
|
||||
func (e *{{ .Element }}) Equal(t *{{ .Element }}) int {
|
||||
eBytes := e.Bytes()
|
||||
tBytes := t.Bytes()
|
||||
return subtle.ConstantTimeCompare(eBytes, tBytes)
|
||||
}
|
||||
var {{ .Prefix }}ZeroEncoding = new({{ .Element }}).Bytes()
|
||||
// IsZero returns 1 if e == 0, and zero otherwise.
|
||||
func (e *{{ .Element }}) IsZero() int {
|
||||
eBytes := e.Bytes()
|
||||
return subtle.ConstantTimeCompare(eBytes, {{ .Prefix }}ZeroEncoding)
|
||||
}
|
||||
// Set sets e = t, and returns e.
|
||||
func (e *{{ .Element }}) Set(t *{{ .Element }}) *{{ .Element }} {
|
||||
e.x = t.x
|
||||
return e
|
||||
}
|
||||
// Bytes returns the {{ .BytesLen }}-byte big-endian encoding of e.
|
||||
func (e *{{ .Element }}) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [{{ .Prefix }}ElementLen]byte
|
||||
return e.bytes(&out)
|
||||
}
|
||||
func (e *{{ .Element }}) bytes(out *[{{ .Prefix }}ElementLen]byte) []byte {
|
||||
var tmp {{ .Prefix }}NonMontgomeryDomainFieldElement
|
||||
{{ .Prefix }}FromMontgomery(&tmp, &e.x)
|
||||
{{ .Prefix }}ToBytes(out, (*{{ .Prefix }}UntypedFieldElement)(&tmp))
|
||||
{{ .Prefix }}InvertEndianness(out[:])
|
||||
return out[:]
|
||||
}
|
||||
// {{ .Prefix }}MinusOneEncoding is the encoding of -1 mod p, so p - 1, the
|
||||
// highest canonical encoding. It is used by SetBytes to check for non-canonical
|
||||
// encodings such as p + k, 2p + k, etc.
|
||||
var {{ .Prefix }}MinusOneEncoding = new({{ .Element }}).Sub(
|
||||
new({{ .Element }}), new({{ .Element }}).One()).Bytes()
|
||||
// SetBytes sets e = v, where v is a big-endian {{ .BytesLen }}-byte encoding, and returns e.
|
||||
// If v is not {{ .BytesLen }} bytes or it encodes a value higher than {{ .Prime }},
|
||||
// SetBytes returns nil and an error, and e is unchanged.
|
||||
func (e *{{ .Element }}) SetBytes(v []byte) (*{{ .Element }}, error) {
|
||||
if len(v) != {{ .Prefix }}ElementLen {
|
||||
return nil, errors.New("invalid {{ .Element }} encoding")
|
||||
}
|
||||
for i := range v {
|
||||
if v[i] < {{ .Prefix }}MinusOneEncoding[i] {
|
||||
break
|
||||
}
|
||||
if v[i] > {{ .Prefix }}MinusOneEncoding[i] {
|
||||
return nil, errors.New("invalid {{ .Element }} encoding")
|
||||
}
|
||||
}
|
||||
var in [{{ .Prefix }}ElementLen]byte
|
||||
copy(in[:], v)
|
||||
{{ .Prefix }}InvertEndianness(in[:])
|
||||
var tmp {{ .Prefix }}NonMontgomeryDomainFieldElement
|
||||
{{ .Prefix }}FromBytes((*{{ .Prefix }}UntypedFieldElement)(&tmp), &in)
|
||||
{{ .Prefix }}ToMontgomery(&e.x, &tmp)
|
||||
return e, nil
|
||||
}
|
||||
// Add sets e = t1 + t2, and returns e.
|
||||
func (e *{{ .Element }}) Add(t1, t2 *{{ .Element }}) *{{ .Element }} {
|
||||
{{ .Prefix }}Add(&e.x, &t1.x, &t2.x)
|
||||
return e
|
||||
}
|
||||
// Sub sets e = t1 - t2, and returns e.
|
||||
func (e *{{ .Element }}) Sub(t1, t2 *{{ .Element }}) *{{ .Element }} {
|
||||
{{ .Prefix }}Sub(&e.x, &t1.x, &t2.x)
|
||||
return e
|
||||
}
|
||||
// Mul sets e = t1 * t2, and returns e.
|
||||
func (e *{{ .Element }}) Mul(t1, t2 *{{ .Element }}) *{{ .Element }} {
|
||||
{{ .Prefix }}Mul(&e.x, &t1.x, &t2.x)
|
||||
return e
|
||||
}
|
||||
// Square sets e = t * t, and returns e.
|
||||
func (e *{{ .Element }}) Square(t *{{ .Element }}) *{{ .Element }} {
|
||||
{{ .Prefix }}Square(&e.x, &t.x)
|
||||
return e
|
||||
}
|
||||
// Select sets v to a if cond == 1, and to b if cond == 0.
|
||||
func (v *{{ .Element }}) Select(a, b *{{ .Element }}, cond int) *{{ .Element }} {
|
||||
{{ .Prefix }}Selectznz((*{{ .Prefix }}UntypedFieldElement)(&v.x), {{ .Prefix }}Uint1(cond),
|
||||
(*{{ .Prefix }}UntypedFieldElement)(&b.x), (*{{ .Prefix }}UntypedFieldElement)(&a.x))
|
||||
return v
|
||||
}
|
||||
func {{ .Prefix }}InvertEndianness(v []byte) {
|
||||
for i := 0; i < len(v)/2; i++ {
|
||||
v[i], v[len(v)-1-i] = v[len(v)-1-i], v[i]
|
||||
}
|
||||
}
|
||||
`
|
||||
|
||||
const tmplAddchain = `// Copyright 2021 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Code generated by {{ .Meta.Name }}. DO NOT EDIT.
|
||||
package fiat
|
||||
// Invert sets e = 1/x, and returns e.
|
||||
//
|
||||
// If x == 0, Invert returns e = 0.
|
||||
func (e *Element) Invert(x *Element) *Element {
|
||||
// Inversion is implemented as exponentiation with exponent p − 2.
|
||||
// The sequence of {{ .Ops.Adds }} multiplications and {{ .Ops.Doubles }} squarings is derived from the
|
||||
// following addition chain generated with {{ .Meta.Module }} {{ .Meta.ReleaseTag }}.
|
||||
//
|
||||
{{- range lines (format .Script) }}
|
||||
// {{ . }}
|
||||
{{- end }}
|
||||
//
|
||||
var z = new(Element).Set(e)
|
||||
{{- range .Program.Temporaries }}
|
||||
var {{ . }} = new(Element)
|
||||
{{- end }}
|
||||
{{ range $i := .Program.Instructions -}}
|
||||
{{- with add $i.Op }}
|
||||
{{ $i.Output }}.Mul({{ .X }}, {{ .Y }})
|
||||
{{- end -}}
|
||||
{{- with double $i.Op }}
|
||||
{{ $i.Output }}.Square({{ .X }})
|
||||
{{- end -}}
|
||||
{{- with shift $i.Op -}}
|
||||
{{- $first := 0 -}}
|
||||
{{- if ne $i.Output.Identifier .X.Identifier }}
|
||||
{{ $i.Output }}.Square({{ .X }})
|
||||
{{- $first = 1 -}}
|
||||
{{- end }}
|
||||
for s := {{ $first }}; s < {{ .S }}; s++ {
|
||||
{{ $i.Output }}.Square({{ $i.Output }})
|
||||
}
|
||||
{{- end -}}
|
||||
{{- end }}
|
||||
return e.Set(z)
|
||||
}
|
||||
`
|
114
internal/sm2ec/fiat/sm2p256.go
Normal file
114
internal/sm2ec/fiat/sm2p256.go
Normal file
@ -0,0 +1,114 @@
|
||||
// Copyright 2021 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Code generated by generate.go. DO NOT EDIT.
|
||||
package fiat
|
||||
import (
|
||||
"crypto/subtle"
|
||||
"errors"
|
||||
)
|
||||
// SM2P256Element is an integer modulo 2^256 - 2^224 - 2^96 + 2^64 - 1.
|
||||
//
|
||||
// The zero value is a valid zero element.
|
||||
type SM2P256Element struct {
|
||||
// Values are represented internally always in the Montgomery domain, and
|
||||
// converted in Bytes and SetBytes.
|
||||
x sm2p256MontgomeryDomainFieldElement
|
||||
}
|
||||
const sm2p256ElementLen = 32
|
||||
type sm2p256UntypedFieldElement = [4]uint64
|
||||
// One sets e = 1, and returns e.
|
||||
func (e *SM2P256Element) One() *SM2P256Element {
|
||||
sm2p256SetOne(&e.x)
|
||||
return e
|
||||
}
|
||||
// Equal returns 1 if e == t, and zero otherwise.
|
||||
func (e *SM2P256Element) Equal(t *SM2P256Element) int {
|
||||
eBytes := e.Bytes()
|
||||
tBytes := t.Bytes()
|
||||
return subtle.ConstantTimeCompare(eBytes, tBytes)
|
||||
}
|
||||
var sm2p256ZeroEncoding = new(SM2P256Element).Bytes()
|
||||
// IsZero returns 1 if e == 0, and zero otherwise.
|
||||
func (e *SM2P256Element) IsZero() int {
|
||||
eBytes := e.Bytes()
|
||||
return subtle.ConstantTimeCompare(eBytes, sm2p256ZeroEncoding)
|
||||
}
|
||||
// Set sets e = t, and returns e.
|
||||
func (e *SM2P256Element) Set(t *SM2P256Element) *SM2P256Element {
|
||||
e.x = t.x
|
||||
return e
|
||||
}
|
||||
// Bytes returns the 32-byte big-endian encoding of e.
|
||||
func (e *SM2P256Element) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [sm2p256ElementLen]byte
|
||||
return e.bytes(&out)
|
||||
}
|
||||
func (e *SM2P256Element) bytes(out *[sm2p256ElementLen]byte) []byte {
|
||||
var tmp sm2p256NonMontgomeryDomainFieldElement
|
||||
sm2p256FromMontgomery(&tmp, &e.x)
|
||||
sm2p256ToBytes(out, (*sm2p256UntypedFieldElement)(&tmp))
|
||||
sm2p256InvertEndianness(out[:])
|
||||
return out[:]
|
||||
}
|
||||
// sm2p256MinusOneEncoding is the encoding of -1 mod p, so p - 1, the
|
||||
// highest canonical encoding. It is used by SetBytes to check for non-canonical
|
||||
// encodings such as p + k, 2p + k, etc.
|
||||
var sm2p256MinusOneEncoding = new(SM2P256Element).Sub(
|
||||
new(SM2P256Element), new(SM2P256Element).One()).Bytes()
|
||||
// SetBytes sets e = v, where v is a big-endian 32-byte encoding, and returns e.
|
||||
// If v is not 32 bytes or it encodes a value higher than 2^256 - 2^224 - 2^96 + 2^64 - 1,
|
||||
// SetBytes returns nil and an error, and e is unchanged.
|
||||
func (e *SM2P256Element) SetBytes(v []byte) (*SM2P256Element, error) {
|
||||
if len(v) != sm2p256ElementLen {
|
||||
return nil, errors.New("invalid SM2P256Element encoding")
|
||||
}
|
||||
for i := range v {
|
||||
if v[i] < sm2p256MinusOneEncoding[i] {
|
||||
break
|
||||
}
|
||||
if v[i] > sm2p256MinusOneEncoding[i] {
|
||||
return nil, errors.New("invalid SM2P256Element encoding")
|
||||
}
|
||||
}
|
||||
var in [sm2p256ElementLen]byte
|
||||
copy(in[:], v)
|
||||
sm2p256InvertEndianness(in[:])
|
||||
var tmp sm2p256NonMontgomeryDomainFieldElement
|
||||
sm2p256FromBytes((*sm2p256UntypedFieldElement)(&tmp), &in)
|
||||
sm2p256ToMontgomery(&e.x, &tmp)
|
||||
return e, nil
|
||||
}
|
||||
// Add sets e = t1 + t2, and returns e.
|
||||
func (e *SM2P256Element) Add(t1, t2 *SM2P256Element) *SM2P256Element {
|
||||
sm2p256Add(&e.x, &t1.x, &t2.x)
|
||||
return e
|
||||
}
|
||||
// Sub sets e = t1 - t2, and returns e.
|
||||
func (e *SM2P256Element) Sub(t1, t2 *SM2P256Element) *SM2P256Element {
|
||||
sm2p256Sub(&e.x, &t1.x, &t2.x)
|
||||
return e
|
||||
}
|
||||
// Mul sets e = t1 * t2, and returns e.
|
||||
func (e *SM2P256Element) Mul(t1, t2 *SM2P256Element) *SM2P256Element {
|
||||
sm2p256Mul(&e.x, &t1.x, &t2.x)
|
||||
return e
|
||||
}
|
||||
// Square sets e = t * t, and returns e.
|
||||
func (e *SM2P256Element) Square(t *SM2P256Element) *SM2P256Element {
|
||||
sm2p256Square(&e.x, &t.x)
|
||||
return e
|
||||
}
|
||||
// Select sets v to a if cond == 1, and to b if cond == 0.
|
||||
func (v *SM2P256Element) Select(a, b *SM2P256Element, cond int) *SM2P256Element {
|
||||
sm2p256Selectznz((*sm2p256UntypedFieldElement)(&v.x), sm2p256Uint1(cond),
|
||||
(*sm2p256UntypedFieldElement)(&b.x), (*sm2p256UntypedFieldElement)(&a.x))
|
||||
return v
|
||||
}
|
||||
func sm2p256InvertEndianness(v []byte) {
|
||||
for i := 0; i < len(v)/2; i++ {
|
||||
v[i], v[len(v)-1-i] = v[len(v)-1-i], v[i]
|
||||
}
|
||||
}
|
1524
internal/sm2ec/fiat/sm2p256_fiat64.go
Normal file
1524
internal/sm2ec/fiat/sm2p256_fiat64.go
Normal file
File diff suppressed because it is too large
Load Diff
94
internal/sm2ec/fiat/sm2p256_invert.go
Normal file
94
internal/sm2ec/fiat/sm2p256_invert.go
Normal file
@ -0,0 +1,94 @@
|
||||
// Copyright 2021 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Code generated by addchain. DO NOT EDIT.
|
||||
package fiat
|
||||
|
||||
// Invert sets e = 1/x, and returns e.
|
||||
//
|
||||
// If x == 0, Invert returns e = 0.
|
||||
func (e *SM2P256Element) Invert(x *SM2P256Element) *SM2P256Element {
|
||||
// Inversion is implemented as exponentiation with exponent p − 2.
|
||||
// The sequence of 14 multiplications and 255 squarings is derived from the
|
||||
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||||
//
|
||||
// _10 = 2*1
|
||||
// _11 = 1 + _10
|
||||
// _110 = 2*_11
|
||||
// _111 = 1 + _110
|
||||
// _111000 = _111 << 3
|
||||
// _111111 = _111 + _111000
|
||||
// _1111110 = 2*_111111
|
||||
// _1111111 = 1 + _1111110
|
||||
// x12 = _1111110 << 5 + _111111
|
||||
// x24 = x12 << 12 + x12
|
||||
// x31 = x24 << 7 + _1111111
|
||||
// i39 = x31 << 2
|
||||
// i68 = i39 << 29
|
||||
// x62 = x31 + i68
|
||||
// i71 = i68 << 2
|
||||
// x64 = i39 + i71 + _11
|
||||
// i265 = ((i71 << 32 + x64) << 64 + x64) << 94
|
||||
// return (x62 + i265) << 2 + 1
|
||||
//
|
||||
var z = new(SM2P256Element).Set(e)
|
||||
var t0 = new(SM2P256Element)
|
||||
var t1 = new(SM2P256Element)
|
||||
var t2 = new(SM2P256Element)
|
||||
|
||||
z.Square(x)
|
||||
t0.Mul(x, z)
|
||||
z.Square(t0)
|
||||
z.Mul(x, z)
|
||||
t1.Square(z)
|
||||
for s := 1; s < 3; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t1.Mul(z, t1)
|
||||
t2.Square(t1)
|
||||
z.Mul(x, t2)
|
||||
for s := 0; s < 5; s++ {
|
||||
t2.Square(t2)
|
||||
}
|
||||
t1.Mul(t1, t2)
|
||||
t2.Square(t1)
|
||||
for s := 1; s < 12; s++ {
|
||||
t2.Square(t2)
|
||||
}
|
||||
t1.Mul(t1, t2)
|
||||
for s := 0; s < 7; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
z.Mul(z, t1)
|
||||
t2.Square(z)
|
||||
for s := 1; s < 2; s++ {
|
||||
t2.Square(t2)
|
||||
}
|
||||
t1.Square(t2)
|
||||
for s := 1; s < 29; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
z.Mul(z, t1)
|
||||
for s := 0; s < 2; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t2.Mul(t2, t1)
|
||||
t0.Mul(t0, t2)
|
||||
for s := 0; s < 32; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t1.Mul(t0, t1)
|
||||
for s := 0; s < 64; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t0.Mul(t0, t1)
|
||||
for s := 0; s < 94; s++ {
|
||||
t0.Square(t0)
|
||||
}
|
||||
z.Mul(z, t0)
|
||||
for s := 0; s < 2; s++ {
|
||||
z.Square(z)
|
||||
}
|
||||
z.Mul(x, z)
|
||||
return e.Set(z)
|
||||
}
|
552
internal/sm2ec/generate.go
Normal file
552
internal/sm2ec/generate.go
Normal file
@ -0,0 +1,552 @@
|
||||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build ignore
|
||||
// +build ignore
|
||||
|
||||
package main
|
||||
|
||||
// Running this generator requires addchain v0.4.0, which can be installed with
|
||||
//
|
||||
// go install github.com/mmcloughlin/addchain/cmd/addchain@v0.4.0
|
||||
//
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/elliptic"
|
||||
"fmt"
|
||||
"go/format"
|
||||
"io"
|
||||
"log"
|
||||
"math/big"
|
||||
"os"
|
||||
"os/exec"
|
||||
"strings"
|
||||
"text/template"
|
||||
)
|
||||
|
||||
var curves = []struct {
|
||||
P string
|
||||
Element string
|
||||
Params *elliptic.CurveParams
|
||||
BuildTags string
|
||||
}{
|
||||
{
|
||||
P: "SM2P256",
|
||||
Element: "fiat.SM2P256Element",
|
||||
Params: &elliptic.CurveParams{
|
||||
Name: "sm2p256v1",
|
||||
BitSize: 256,
|
||||
P: bigFromHex("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF"),
|
||||
N: bigFromHex("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123"),
|
||||
B: bigFromHex("28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93"),
|
||||
Gx: bigFromHex("32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7"),
|
||||
Gy: bigFromHex("BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0"),
|
||||
},
|
||||
BuildTags: "",
|
||||
},
|
||||
}
|
||||
|
||||
func main() {
|
||||
t := template.Must(template.New("tmplNISTEC").Parse(tmplNISTEC))
|
||||
|
||||
tmplAddchainFile, err := os.CreateTemp("", "addchain-template")
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer os.Remove(tmplAddchainFile.Name())
|
||||
if _, err := io.WriteString(tmplAddchainFile, tmplAddchain); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := tmplAddchainFile.Close(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
for _, c := range curves {
|
||||
p := strings.ToLower(c.P)
|
||||
elementLen := (c.Params.BitSize + 7) / 8
|
||||
B := fmt.Sprintf("%#v", c.Params.B.FillBytes(make([]byte, elementLen)))
|
||||
G := fmt.Sprintf("%#v", elliptic.Marshal(c.Params, c.Params.Gx, c.Params.Gy))
|
||||
|
||||
log.Printf("Generating %s.go...", p)
|
||||
f, err := os.Create(p + ".go")
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
buf := &bytes.Buffer{}
|
||||
if err := t.Execute(buf, map[string]interface{}{
|
||||
"P": c.P, "p": p, "B": B, "G": G,
|
||||
"Element": c.Element, "ElementLen": elementLen,
|
||||
"BuildTags": c.BuildTags,
|
||||
}); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
out, err := format.Source(buf.Bytes())
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if _, err := f.Write(out); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
// If p = 3 mod 4, implement modular square root by exponentiation.
|
||||
mod4 := new(big.Int).Mod(c.Params.P, big.NewInt(4))
|
||||
if mod4.Cmp(big.NewInt(3)) != 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
exp := new(big.Int).Add(c.Params.P, big.NewInt(1))
|
||||
exp.Div(exp, big.NewInt(4))
|
||||
|
||||
tmp, err := os.CreateTemp("", "addchain-"+p)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer os.Remove(tmp.Name())
|
||||
cmd := exec.Command("addchain", "search", fmt.Sprintf("%d", exp))
|
||||
cmd.Stderr = os.Stderr
|
||||
cmd.Stdout = tmp
|
||||
if err := cmd.Run(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := tmp.Close(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
cmd = exec.Command("addchain", "gen", "-tmpl", tmplAddchainFile.Name(), tmp.Name())
|
||||
cmd.Stderr = os.Stderr
|
||||
out, err = cmd.Output()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
out = bytes.Replace(out, []byte("Element"), []byte(c.Element), -1)
|
||||
out = bytes.Replace(out, []byte("sqrtCandidate"), []byte(p+"SqrtCandidate"), -1)
|
||||
out, err = format.Source(out)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if _, err := f.Write(out); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const tmplNISTEC = `// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Code generated by generate.go. DO NOT EDIT.
|
||||
{{ if .BuildTags }}
|
||||
//go:build {{ .BuildTags }}
|
||||
// +build {{ .BuildTags }}
|
||||
{{ end }}
|
||||
package sm2ec
|
||||
import (
|
||||
"github.com/emmansun/gmsm/sm2ec/fiat"
|
||||
"crypto/subtle"
|
||||
"errors"
|
||||
"sync"
|
||||
)
|
||||
var {{.p}}B, _ = new({{.Element}}).SetBytes({{.B}})
|
||||
var {{.p}}G, _ = New{{.P}}Point().SetBytes({{.G}})
|
||||
// {{.p}}ElementLength is the length of an element of the base or scalar field,
|
||||
// which have the same bytes length for all NIST P curves.
|
||||
const {{.p}}ElementLength = {{ .ElementLen }}
|
||||
// {{.P}}Point is a {{.P}} point. The zero value is NOT valid.
|
||||
type {{.P}}Point struct {
|
||||
// The point is represented in projective coordinates (X:Y:Z),
|
||||
// where x = X/Z and y = Y/Z.
|
||||
x, y, z *{{.Element}}
|
||||
}
|
||||
// New{{.P}}Point returns a new {{.P}}Point representing the point at infinity point.
|
||||
func New{{.P}}Point() *{{.P}}Point {
|
||||
return &{{.P}}Point{
|
||||
x: new({{.Element}}),
|
||||
y: new({{.Element}}).One(),
|
||||
z: new({{.Element}}),
|
||||
}
|
||||
}
|
||||
// New{{.P}}Generator returns a new {{.P}}Point set to the canonical generator.
|
||||
func New{{.P}}Generator() *{{.P}}Point {
|
||||
return (&{{.P}}Point{
|
||||
x: new({{.Element}}),
|
||||
y: new({{.Element}}),
|
||||
z: new({{.Element}}),
|
||||
}).Set({{.p}}G)
|
||||
}
|
||||
// Set sets p = q and returns p.
|
||||
func (p *{{.P}}Point) Set(q *{{.P}}Point) *{{.P}}Point {
|
||||
p.x.Set(q.x)
|
||||
p.y.Set(q.y)
|
||||
p.z.Set(q.z)
|
||||
return p
|
||||
}
|
||||
// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
|
||||
// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
|
||||
// the curve, it returns nil and an error, and the receiver is unchanged.
|
||||
// Otherwise, it returns p.
|
||||
func (p *{{.P}}Point) SetBytes(b []byte) (*{{.P}}Point, error) {
|
||||
switch {
|
||||
// Point at infinity.
|
||||
case len(b) == 1 && b[0] == 0:
|
||||
return p.Set(New{{.P}}Point()), nil
|
||||
// Uncompressed form.
|
||||
case len(b) == 1+2*{{.p}}ElementLength && b[0] == 4:
|
||||
x, err := new({{.Element}}).SetBytes(b[1 : 1+{{.p}}ElementLength])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
y, err := new({{.Element}}).SetBytes(b[1+{{.p}}ElementLength:])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err := {{.p}}CheckOnCurve(x, y); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
p.x.Set(x)
|
||||
p.y.Set(y)
|
||||
p.z.One()
|
||||
return p, nil
|
||||
// Compressed form.
|
||||
case len(b) == 1+{{.p}}ElementLength && (b[0] == 2 || b[0] == 3):
|
||||
x, err := new({{.Element}}).SetBytes(b[1:])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// y² = x³ - 3x + b
|
||||
y := {{.p}}Polynomial(new({{.Element}}), x)
|
||||
if !{{.p}}Sqrt(y, y) {
|
||||
return nil, errors.New("invalid {{.P}} compressed point encoding")
|
||||
}
|
||||
// Select the positive or negative root, as indicated by the least
|
||||
// significant bit, based on the encoding type byte.
|
||||
otherRoot := new({{.Element}})
|
||||
otherRoot.Sub(otherRoot, y)
|
||||
cond := y.Bytes()[{{.p}}ElementLength-1]&1 ^ b[0]&1
|
||||
y.Select(otherRoot, y, int(cond))
|
||||
p.x.Set(x)
|
||||
p.y.Set(y)
|
||||
p.z.One()
|
||||
return p, nil
|
||||
default:
|
||||
return nil, errors.New("invalid {{.P}} point encoding")
|
||||
}
|
||||
}
|
||||
// {{.p}}Polynomial sets y2 to x³ - 3x + b, and returns y2.
|
||||
func {{.p}}Polynomial(y2, x *{{.Element}}) *{{.Element}} {
|
||||
y2.Square(x)
|
||||
y2.Mul(y2, x)
|
||||
threeX := new({{.Element}}).Add(x, x)
|
||||
threeX.Add(threeX, x)
|
||||
y2.Sub(y2, threeX)
|
||||
return y2.Add(y2, {{.p}}B)
|
||||
}
|
||||
func {{.p}}CheckOnCurve(x, y *{{.Element}}) error {
|
||||
// y² = x³ - 3x + b
|
||||
rhs := {{.p}}Polynomial(new({{.Element}}), x)
|
||||
lhs := new({{.Element}}).Square(y)
|
||||
if rhs.Equal(lhs) != 1 {
|
||||
return errors.New("{{.P}} point not on curve")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
// Bytes returns the uncompressed or infinity encoding of p, as specified in
|
||||
// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
|
||||
// infinity is shorter than all other encodings.
|
||||
func (p *{{.P}}Point) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [1+2*{{.p}}ElementLength]byte
|
||||
return p.bytes(&out)
|
||||
}
|
||||
func (p *{{.P}}Point) bytes(out *[1+2*{{.p}}ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
zinv := new({{.Element}}).Invert(p.z)
|
||||
x := new({{.Element}}).Mul(p.x, zinv)
|
||||
y := new({{.Element}}).Mul(p.y, zinv)
|
||||
buf := append(out[:0], 4)
|
||||
buf = append(buf, x.Bytes()...)
|
||||
buf = append(buf, y.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
// BytesCompressed returns the compressed or infinity encoding of p, as
|
||||
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
|
||||
// point at infinity is shorter than all other encodings.
|
||||
func (p *{{.P}}Point) BytesCompressed() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [1 + {{.p}}ElementLength]byte
|
||||
return p.bytesCompressed(&out)
|
||||
}
|
||||
func (p *{{.P}}Point) bytesCompressed(out *[1 + {{.p}}ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
zinv := new({{.Element}}).Invert(p.z)
|
||||
x := new({{.Element}}).Mul(p.x, zinv)
|
||||
y := new({{.Element}}).Mul(p.y, zinv)
|
||||
// Encode the sign of the y coordinate (indicated by the least significant
|
||||
// bit) as the encoding type (2 or 3).
|
||||
buf := append(out[:0], 2)
|
||||
buf[0] |= y.Bytes()[{{.p}}ElementLength-1] & 1
|
||||
buf = append(buf, x.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
// Add sets q = p1 + p2, and returns q. The points may overlap.
|
||||
func (q *{{.P}}Point) Add(p1, p2 *{{.P}}Point) *{{.P}}Point {
|
||||
// Complete addition formula for a = -3 from "Complete addition formulas for
|
||||
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
|
||||
t0 := new({{.Element}}).Mul(p1.x, p2.x) // t0 := X1 * X2
|
||||
t1 := new({{.Element}}).Mul(p1.y, p2.y) // t1 := Y1 * Y2
|
||||
t2 := new({{.Element}}).Mul(p1.z, p2.z) // t2 := Z1 * Z2
|
||||
t3 := new({{.Element}}).Add(p1.x, p1.y) // t3 := X1 + Y1
|
||||
t4 := new({{.Element}}).Add(p2.x, p2.y) // t4 := X2 + Y2
|
||||
t3.Mul(t3, t4) // t3 := t3 * t4
|
||||
t4.Add(t0, t1) // t4 := t0 + t1
|
||||
t3.Sub(t3, t4) // t3 := t3 - t4
|
||||
t4.Add(p1.y, p1.z) // t4 := Y1 + Z1
|
||||
x3 := new({{.Element}}).Add(p2.y, p2.z) // X3 := Y2 + Z2
|
||||
t4.Mul(t4, x3) // t4 := t4 * X3
|
||||
x3.Add(t1, t2) // X3 := t1 + t2
|
||||
t4.Sub(t4, x3) // t4 := t4 - X3
|
||||
x3.Add(p1.x, p1.z) // X3 := X1 + Z1
|
||||
y3 := new({{.Element}}).Add(p2.x, p2.z) // Y3 := X2 + Z2
|
||||
x3.Mul(x3, y3) // X3 := X3 * Y3
|
||||
y3.Add(t0, t2) // Y3 := t0 + t2
|
||||
y3.Sub(x3, y3) // Y3 := X3 - Y3
|
||||
z3 := new({{.Element}}).Mul({{.p}}B, t2) // Z3 := b * t2
|
||||
x3.Sub(y3, z3) // X3 := Y3 - Z3
|
||||
z3.Add(x3, x3) // Z3 := X3 + X3
|
||||
x3.Add(x3, z3) // X3 := X3 + Z3
|
||||
z3.Sub(t1, x3) // Z3 := t1 - X3
|
||||
x3.Add(t1, x3) // X3 := t1 + X3
|
||||
y3.Mul({{.p}}B, y3) // Y3 := b * Y3
|
||||
t1.Add(t2, t2) // t1 := t2 + t2
|
||||
t2.Add(t1, t2) // t2 := t1 + t2
|
||||
y3.Sub(y3, t2) // Y3 := Y3 - t2
|
||||
y3.Sub(y3, t0) // Y3 := Y3 - t0
|
||||
t1.Add(y3, y3) // t1 := Y3 + Y3
|
||||
y3.Add(t1, y3) // Y3 := t1 + Y3
|
||||
t1.Add(t0, t0) // t1 := t0 + t0
|
||||
t0.Add(t1, t0) // t0 := t1 + t0
|
||||
t0.Sub(t0, t2) // t0 := t0 - t2
|
||||
t1.Mul(t4, y3) // t1 := t4 * Y3
|
||||
t2.Mul(t0, y3) // t2 := t0 * Y3
|
||||
y3.Mul(x3, z3) // Y3 := X3 * Z3
|
||||
y3.Add(y3, t2) // Y3 := Y3 + t2
|
||||
x3.Mul(t3, x3) // X3 := t3 * X3
|
||||
x3.Sub(x3, t1) // X3 := X3 - t1
|
||||
z3.Mul(t4, z3) // Z3 := t4 * Z3
|
||||
t1.Mul(t3, t0) // t1 := t3 * t0
|
||||
z3.Add(z3, t1) // Z3 := Z3 + t1
|
||||
q.x.Set(x3)
|
||||
q.y.Set(y3)
|
||||
q.z.Set(z3)
|
||||
return q
|
||||
}
|
||||
// Double sets q = p + p, and returns q. The points may overlap.
|
||||
func (q *{{.P}}Point) Double(p *{{.P}}Point) *{{.P}}Point {
|
||||
// Complete addition formula for a = -3 from "Complete addition formulas for
|
||||
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
|
||||
t0 := new({{.Element}}).Square(p.x) // t0 := X ^ 2
|
||||
t1 := new({{.Element}}).Square(p.y) // t1 := Y ^ 2
|
||||
t2 := new({{.Element}}).Square(p.z) // t2 := Z ^ 2
|
||||
t3 := new({{.Element}}).Mul(p.x, p.y) // t3 := X * Y
|
||||
t3.Add(t3, t3) // t3 := t3 + t3
|
||||
z3 := new({{.Element}}).Mul(p.x, p.z) // Z3 := X * Z
|
||||
z3.Add(z3, z3) // Z3 := Z3 + Z3
|
||||
y3 := new({{.Element}}).Mul({{.p}}B, t2) // Y3 := b * t2
|
||||
y3.Sub(y3, z3) // Y3 := Y3 - Z3
|
||||
x3 := new({{.Element}}).Add(y3, y3) // X3 := Y3 + Y3
|
||||
y3.Add(x3, y3) // Y3 := X3 + Y3
|
||||
x3.Sub(t1, y3) // X3 := t1 - Y3
|
||||
y3.Add(t1, y3) // Y3 := t1 + Y3
|
||||
y3.Mul(x3, y3) // Y3 := X3 * Y3
|
||||
x3.Mul(x3, t3) // X3 := X3 * t3
|
||||
t3.Add(t2, t2) // t3 := t2 + t2
|
||||
t2.Add(t2, t3) // t2 := t2 + t3
|
||||
z3.Mul({{.p}}B, z3) // Z3 := b * Z3
|
||||
z3.Sub(z3, t2) // Z3 := Z3 - t2
|
||||
z3.Sub(z3, t0) // Z3 := Z3 - t0
|
||||
t3.Add(z3, z3) // t3 := Z3 + Z3
|
||||
z3.Add(z3, t3) // Z3 := Z3 + t3
|
||||
t3.Add(t0, t0) // t3 := t0 + t0
|
||||
t0.Add(t3, t0) // t0 := t3 + t0
|
||||
t0.Sub(t0, t2) // t0 := t0 - t2
|
||||
t0.Mul(t0, z3) // t0 := t0 * Z3
|
||||
y3.Add(y3, t0) // Y3 := Y3 + t0
|
||||
t0.Mul(p.y, p.z) // t0 := Y * Z
|
||||
t0.Add(t0, t0) // t0 := t0 + t0
|
||||
z3.Mul(t0, z3) // Z3 := t0 * Z3
|
||||
x3.Sub(x3, z3) // X3 := X3 - Z3
|
||||
z3.Mul(t0, t1) // Z3 := t0 * t1
|
||||
z3.Add(z3, z3) // Z3 := Z3 + Z3
|
||||
z3.Add(z3, z3) // Z3 := Z3 + Z3
|
||||
q.x.Set(x3)
|
||||
q.y.Set(y3)
|
||||
q.z.Set(z3)
|
||||
return q
|
||||
}
|
||||
// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
|
||||
func (q *{{.P}}Point) Select(p1, p2 *{{.P}}Point, cond int) *{{.P}}Point {
|
||||
q.x.Select(p1.x, p2.x, cond)
|
||||
q.y.Select(p1.y, p2.y, cond)
|
||||
q.z.Select(p1.z, p2.z, cond)
|
||||
return q
|
||||
}
|
||||
// A {{.p}}Table holds the first 15 multiples of a point at offset -1, so [1]P
|
||||
// is at table[0], [15]P is at table[14], and [0]P is implicitly the identity
|
||||
// point.
|
||||
type {{.p}}Table [15]*{{.P}}Point
|
||||
// Select selects the n-th multiple of the table base point into p. It works in
|
||||
// constant time by iterating over every entry of the table. n must be in [0, 15].
|
||||
func (table *{{.p}}Table) Select(p *{{.P}}Point, n uint8) {
|
||||
if n >= 16 {
|
||||
panic("nistec: internal error: {{.p}}Table called with out-of-bounds value")
|
||||
}
|
||||
p.Set(New{{.P}}Point())
|
||||
for i := uint8(1); i < 16; i++ {
|
||||
cond := subtle.ConstantTimeByteEq(i, n)
|
||||
p.Select(table[i-1], p, cond)
|
||||
}
|
||||
}
|
||||
// ScalarMult sets p = scalar * q, and returns p.
|
||||
func (p *{{.P}}Point) ScalarMult(q *{{.P}}Point, scalar []byte) (*{{.P}}Point, error) {
|
||||
// Compute a {{.p}}Table for the base point q. The explicit New{{.P}}Point
|
||||
// calls get inlined, letting the allocations live on the stack.
|
||||
var table = {{.p}}Table{New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(),
|
||||
New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(),
|
||||
New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(),
|
||||
New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point()}
|
||||
table[0].Set(q)
|
||||
for i := 1; i < 15; i += 2 {
|
||||
table[i].Double(table[i/2])
|
||||
table[i+1].Add(table[i], q)
|
||||
}
|
||||
// Instead of doing the classic double-and-add chain, we do it with a
|
||||
// four-bit window: we double four times, and then add [0-15]P.
|
||||
t := New{{.P}}Point()
|
||||
p.Set(New{{.P}}Point())
|
||||
for i, byte := range scalar {
|
||||
// No need to double on the first iteration, as p is the identity at
|
||||
// this point, and [N]∞ = ∞.
|
||||
if i != 0 {
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
}
|
||||
windowValue := byte >> 4
|
||||
table.Select(t, windowValue)
|
||||
p.Add(p, t)
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
windowValue = byte & 0b1111
|
||||
table.Select(t, windowValue)
|
||||
p.Add(p, t)
|
||||
}
|
||||
return p, nil
|
||||
}
|
||||
var {{.p}}GeneratorTable *[{{.p}}ElementLength * 2]{{.p}}Table
|
||||
var {{.p}}GeneratorTableOnce sync.Once
|
||||
// generatorTable returns a sequence of {{.p}}Tables. The first table contains
|
||||
// multiples of G. Each successive table is the previous table doubled four
|
||||
// times.
|
||||
func (p *{{.P}}Point) generatorTable() *[{{.p}}ElementLength * 2]{{.p}}Table {
|
||||
{{.p}}GeneratorTableOnce.Do(func() {
|
||||
{{.p}}GeneratorTable = new([{{.p}}ElementLength * 2]{{.p}}Table)
|
||||
base := New{{.P}}Generator()
|
||||
for i := 0; i < {{.p}}ElementLength*2; i++ {
|
||||
{{.p}}GeneratorTable[i][0] = New{{.P}}Point().Set(base)
|
||||
for j := 1; j < 15; j++ {
|
||||
{{.p}}GeneratorTable[i][j] = New{{.P}}Point().Add({{.p}}GeneratorTable[i][j-1], base)
|
||||
}
|
||||
base.Double(base)
|
||||
base.Double(base)
|
||||
base.Double(base)
|
||||
base.Double(base)
|
||||
}
|
||||
})
|
||||
return {{.p}}GeneratorTable
|
||||
}
|
||||
// ScalarBaseMult sets p = scalar * B, where B is the canonical generator, and
|
||||
// returns p.
|
||||
func (p *{{.P}}Point) ScalarBaseMult(scalar []byte) (*{{.P}}Point, error) {
|
||||
if len(scalar) != {{.p}}ElementLength {
|
||||
return nil, errors.New("invalid scalar length")
|
||||
}
|
||||
tables := p.generatorTable()
|
||||
// This is also a scalar multiplication with a four-bit window like in
|
||||
// ScalarMult, but in this case the doublings are precomputed. The value
|
||||
// [windowValue]G added at iteration k would normally get doubled
|
||||
// (totIterations-k)×4 times, but with a larger precomputation we can
|
||||
// instead add [2^((totIterations-k)×4)][windowValue]G and avoid the
|
||||
// doublings between iterations.
|
||||
t := New{{.P}}Point()
|
||||
p.Set(New{{.P}}Point())
|
||||
tableIndex := len(tables) - 1
|
||||
for _, byte := range scalar {
|
||||
windowValue := byte >> 4
|
||||
tables[tableIndex].Select(t, windowValue)
|
||||
p.Add(p, t)
|
||||
tableIndex--
|
||||
windowValue = byte & 0b1111
|
||||
tables[tableIndex].Select(t, windowValue)
|
||||
p.Add(p, t)
|
||||
tableIndex--
|
||||
}
|
||||
return p, nil
|
||||
}
|
||||
// {{.p}}Sqrt sets e to a square root of x. If x is not a square, {{.p}}Sqrt returns
|
||||
// false and e is unchanged. e and x can overlap.
|
||||
func {{.p}}Sqrt(e, x *{{ .Element }}) (isSquare bool) {
|
||||
candidate := new({{ .Element }})
|
||||
{{.p}}SqrtCandidate(candidate, x)
|
||||
square := new({{ .Element }}).Square(candidate)
|
||||
if square.Equal(x) != 1 {
|
||||
return false
|
||||
}
|
||||
e.Set(candidate)
|
||||
return true
|
||||
}
|
||||
`
|
||||
|
||||
const tmplAddchain = `
|
||||
// sqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
|
||||
func sqrtCandidate(z, x *Element) {
|
||||
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
|
||||
//
|
||||
// The sequence of {{ .Ops.Adds }} multiplications and {{ .Ops.Doubles }} squarings is derived from the
|
||||
// following addition chain generated with {{ .Meta.Module }} {{ .Meta.ReleaseTag }}.
|
||||
//
|
||||
{{- range lines (format .Script) }}
|
||||
// {{ . }}
|
||||
{{- end }}
|
||||
//
|
||||
{{- range .Program.Temporaries }}
|
||||
var {{ . }} = new(Element)
|
||||
{{- end }}
|
||||
{{ range $i := .Program.Instructions -}}
|
||||
{{- with add $i.Op }}
|
||||
{{ $i.Output }}.Mul({{ .X }}, {{ .Y }})
|
||||
{{- end -}}
|
||||
{{- with double $i.Op }}
|
||||
{{ $i.Output }}.Square({{ .X }})
|
||||
{{- end -}}
|
||||
{{- with shift $i.Op -}}
|
||||
{{- $first := 0 -}}
|
||||
{{- if ne $i.Output.Identifier .X.Identifier }}
|
||||
{{ $i.Output }}.Square({{ .X }})
|
||||
{{- $first = 1 -}}
|
||||
{{- end }}
|
||||
for s := {{ $first }}; s < {{ .S }}; s++ {
|
||||
{{ $i.Output }}.Square({{ $i.Output }})
|
||||
}
|
||||
{{- end -}}
|
||||
{{- end }}
|
||||
}
|
||||
`
|
11
internal/sm2ec/sm2ec.go
Normal file
11
internal/sm2ec/sm2ec.go
Normal file
@ -0,0 +1,11 @@
|
||||
// Package sm2ec implements the SM2 Prime elliptic curves.
|
||||
//
|
||||
// This package uses fiat-crypto or specialized assembly and Go code for its
|
||||
// backend field arithmetic (not math/big) and exposes constant-time, heap
|
||||
// allocation-free, byte slice-based safe APIs. Group operations use modern and
|
||||
// safe complete addition formulas where possible. The point at infinity is
|
||||
// handled and encoded according to SEC 1, Version 2.0, and invalid curve points
|
||||
// can't be represented.
|
||||
package sm2ec
|
||||
|
||||
//go:generate go run generate.go
|
157
internal/sm2ec/sm2ec_test.go
Normal file
157
internal/sm2ec/sm2ec_test.go
Normal file
@ -0,0 +1,157 @@
|
||||
package sm2ec
|
||||
|
||||
import (
|
||||
"encoding/hex"
|
||||
"math/big"
|
||||
"testing"
|
||||
)
|
||||
|
||||
// r = 2^256
|
||||
var r = bigFromHex("010000000000000000000000000000000000000000000000000000000000000000")
|
||||
var r0 = bigFromHex("010000000000000000")
|
||||
var sm2Prime = bigFromHex("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF")
|
||||
var sm2n = bigFromHex("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123")
|
||||
var nistP256Prime = bigFromDecimal("115792089210356248762697446949407573530086143415290314195533631308867097853951")
|
||||
|
||||
func generateMontgomeryDomain(in *big.Int, p *big.Int) *big.Int {
|
||||
tmp := new(big.Int)
|
||||
tmp = tmp.Mul(in, r)
|
||||
return tmp.Mod(tmp, p)
|
||||
}
|
||||
|
||||
func bigFromHex(s string) *big.Int {
|
||||
b, ok := new(big.Int).SetString(s, 16)
|
||||
if !ok {
|
||||
panic("sm2ec: internal error: invalid encoding")
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func bigFromDecimal(s string) *big.Int {
|
||||
b, ok := new(big.Int).SetString(s, 10)
|
||||
if !ok {
|
||||
panic("sm2ec: internal error: invalid encoding")
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func TestSM2P256MontgomeryDomain(t *testing.T) {
|
||||
tests := []struct {
|
||||
in string
|
||||
out string
|
||||
}{
|
||||
{ // One
|
||||
"01",
|
||||
"0000000100000000000000000000000000000000ffffffff0000000000000001",
|
||||
},
|
||||
{ // Gx
|
||||
"32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7",
|
||||
"91167a5ee1c13b05d6a1ed99ac24c3c33e7981eddca6c05061328990f418029e",
|
||||
},
|
||||
{ // Gy
|
||||
"BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0",
|
||||
"63cd65d481d735bd8d4cfb066e2a48f8c1f5e5788d3295fac1354e593c2d0ddd",
|
||||
},
|
||||
{ // B
|
||||
"28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93",
|
||||
"240fe188ba20e2c8527981505ea51c3c71cf379ae9b537ab90d230632bc0dd42",
|
||||
},
|
||||
{ // R
|
||||
"010000000000000000000000000000000000000000000000000000000000000000",
|
||||
"0400000002000000010000000100000002ffffffff0000000200000003",
|
||||
},
|
||||
}
|
||||
for _, test := range tests {
|
||||
out := generateMontgomeryDomain(bigFromHex(test.in), sm2Prime)
|
||||
if out.Cmp(bigFromHex(test.out)) != 0 {
|
||||
t.Errorf("expected %v, got %v", test.out, hex.EncodeToString(out.Bytes()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSM2P256MontgomeryDomainN(t *testing.T) {
|
||||
tests := []struct {
|
||||
in string
|
||||
out string
|
||||
}{
|
||||
{ // R
|
||||
"010000000000000000000000000000000000000000000000000000000000000000",
|
||||
"1eb5e412a22b3d3b620fc84c3affe0d43464504ade6fa2fa901192af7c114f20",
|
||||
},
|
||||
}
|
||||
for _, test := range tests {
|
||||
out := generateMontgomeryDomain(bigFromHex(test.in), sm2n)
|
||||
if out.Cmp(bigFromHex(test.out)) != 0 {
|
||||
t.Errorf("expected %v, got %v", test.out, hex.EncodeToString(out.Bytes()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSM2P256MontgomeryK0(t *testing.T) {
|
||||
tests := []struct {
|
||||
in *big.Int
|
||||
out string
|
||||
}{
|
||||
{
|
||||
sm2n,
|
||||
"327f9e8872350975",
|
||||
},
|
||||
{
|
||||
sm2Prime,
|
||||
"0000000000000001",
|
||||
},
|
||||
}
|
||||
for _, test := range tests {
|
||||
// k0 = -in^(-1) mod 2^64
|
||||
k0 := new(big.Int).ModInverse(test.in, r0)
|
||||
k0.Neg(k0)
|
||||
k0.Mod(k0, r0)
|
||||
if k0.Cmp(bigFromHex(test.out)) != 0 {
|
||||
t.Errorf("expected %v, got %v", test.out, hex.EncodeToString(k0.Bytes()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestNISTP256MontgomeryDomain(t *testing.T) {
|
||||
tests := []struct {
|
||||
in string
|
||||
out string
|
||||
}{
|
||||
{ // One
|
||||
"01",
|
||||
"fffffffeffffffffffffffffffffffff000000000000000000000001",
|
||||
},
|
||||
{ // Gx
|
||||
"6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
|
||||
"18905f76a53755c679fb732b7762251075ba95fc5fedb60179e730d418a9143c",
|
||||
},
|
||||
{ // Gy
|
||||
"4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5",
|
||||
"8571ff1825885d85d2e88688dd21f3258b4ab8e4ba19e45cddf25357ce95560a",
|
||||
},
|
||||
{ // B
|
||||
"5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
|
||||
"dc30061d04874834e5a220abf7212ed6acf005cd78843090d89cdf6229c4bddf",
|
||||
},
|
||||
{ // R
|
||||
"010000000000000000000000000000000000000000000000000000000000000000",
|
||||
"04fffffffdfffffffffffffffefffffffbffffffff0000000000000003",
|
||||
},
|
||||
}
|
||||
for _, test := range tests {
|
||||
out := generateMontgomeryDomain(bigFromHex(test.in), nistP256Prime)
|
||||
if out.Cmp(bigFromHex(test.out)) != 0 {
|
||||
t.Errorf("expected %v, got %v", test.out, hex.EncodeToString(out.Bytes()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestForSqrt(t *testing.T) {
|
||||
mod4 := new(big.Int).Mod(sm2Prime, big.NewInt(4))
|
||||
if mod4.Cmp(big.NewInt(3)) != 0 {
|
||||
t.Fatal("sm2 prime is not fufill 3 mod 4")
|
||||
}
|
||||
|
||||
exp := new(big.Int).Add(sm2Prime, big.NewInt(1))
|
||||
exp.Div(exp, big.NewInt(4))
|
||||
}
|
485
internal/sm2ec/sm2p256.go
Normal file
485
internal/sm2ec/sm2p256.go
Normal file
@ -0,0 +1,485 @@
|
||||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
// Code generated by generate.go. DO NOT EDIT.
|
||||
//go:build !amd64 && !arm64 || generic
|
||||
// +build !amd64,!arm64 generic
|
||||
|
||||
package sm2ec
|
||||
|
||||
import (
|
||||
"crypto/subtle"
|
||||
"errors"
|
||||
"github.com/emmansun/gmsm/sm2ec/fiat"
|
||||
"sync"
|
||||
)
|
||||
|
||||
var sm2p256B, _ = new(fiat.SM2P256Element).SetBytes([]byte{0x28, 0xe9, 0xfa, 0x9e, 0x9d, 0x9f, 0x5e, 0x34, 0x4d, 0x5a, 0x9e, 0x4b, 0xcf, 0x65, 0x9, 0xa7, 0xf3, 0x97, 0x89, 0xf5, 0x15, 0xab, 0x8f, 0x92, 0xdd, 0xbc, 0xbd, 0x41, 0x4d, 0x94, 0xe, 0x93})
|
||||
var sm2p256G, _ = NewSM2P256Point().SetBytes([]byte{0x4, 0x32, 0xc4, 0xae, 0x2c, 0x1f, 0x19, 0x81, 0x19, 0x5f, 0x99, 0x4, 0x46, 0x6a, 0x39, 0xc9, 0x94, 0x8f, 0xe3, 0xb, 0xbf, 0xf2, 0x66, 0xb, 0xe1, 0x71, 0x5a, 0x45, 0x89, 0x33, 0x4c, 0x74, 0xc7, 0xbc, 0x37, 0x36, 0xa2, 0xf4, 0xf6, 0x77, 0x9c, 0x59, 0xbd, 0xce, 0xe3, 0x6b, 0x69, 0x21, 0x53, 0xd0, 0xa9, 0x87, 0x7c, 0xc6, 0x2a, 0x47, 0x40, 0x2, 0xdf, 0x32, 0xe5, 0x21, 0x39, 0xf0, 0xa0})
|
||||
|
||||
// sm2p256ElementLength is the length of an element of the base or scalar field,
|
||||
// which have the same bytes length for all NIST P curves.
|
||||
const sm2p256ElementLength = 32
|
||||
|
||||
// SM2P256Point is a SM2P256 point. The zero value is NOT valid.
|
||||
type SM2P256Point struct {
|
||||
// The point is represented in projective coordinates (X:Y:Z),
|
||||
// where x = X/Z and y = Y/Z.
|
||||
x, y, z *fiat.SM2P256Element
|
||||
}
|
||||
|
||||
// NewSM2P256Point returns a new SM2P256Point representing the point at infinity point.
|
||||
func NewSM2P256Point() *SM2P256Point {
|
||||
return &SM2P256Point{
|
||||
x: new(fiat.SM2P256Element),
|
||||
y: new(fiat.SM2P256Element).One(),
|
||||
z: new(fiat.SM2P256Element),
|
||||
}
|
||||
}
|
||||
|
||||
// NewSM2P256Generator returns a new SM2P256Point set to the canonical generator.
|
||||
func NewSM2P256Generator() *SM2P256Point {
|
||||
return (&SM2P256Point{
|
||||
x: new(fiat.SM2P256Element),
|
||||
y: new(fiat.SM2P256Element),
|
||||
z: new(fiat.SM2P256Element),
|
||||
}).Set(sm2p256G)
|
||||
}
|
||||
|
||||
// Set sets p = q and returns p.
|
||||
func (p *SM2P256Point) Set(q *SM2P256Point) *SM2P256Point {
|
||||
p.x.Set(q.x)
|
||||
p.y.Set(q.y)
|
||||
p.z.Set(q.z)
|
||||
return p
|
||||
}
|
||||
|
||||
// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
|
||||
// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
|
||||
// the curve, it returns nil and an error, and the receiver is unchanged.
|
||||
// Otherwise, it returns p.
|
||||
func (p *SM2P256Point) SetBytes(b []byte) (*SM2P256Point, error) {
|
||||
switch {
|
||||
// Point at infinity.
|
||||
case len(b) == 1 && b[0] == 0:
|
||||
return p.Set(NewSM2P256Point()), nil
|
||||
// Uncompressed form.
|
||||
case len(b) == 1+2*sm2p256ElementLength && b[0] == 4:
|
||||
x, err := new(fiat.SM2P256Element).SetBytes(b[1 : 1+sm2p256ElementLength])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
y, err := new(fiat.SM2P256Element).SetBytes(b[1+sm2p256ElementLength:])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err := sm2p256CheckOnCurve(x, y); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
p.x.Set(x)
|
||||
p.y.Set(y)
|
||||
p.z.One()
|
||||
return p, nil
|
||||
// Compressed form.
|
||||
case len(b) == 1+sm2p256ElementLength && (b[0] == 2 || b[0] == 3):
|
||||
x, err := new(fiat.SM2P256Element).SetBytes(b[1:])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// y² = x³ - 3x + b
|
||||
y := sm2p256Polynomial(new(fiat.SM2P256Element), x)
|
||||
if !sm2p256Sqrt(y, y) {
|
||||
return nil, errors.New("invalid SM2P256 compressed point encoding")
|
||||
}
|
||||
// Select the positive or negative root, as indicated by the least
|
||||
// significant bit, based on the encoding type byte.
|
||||
otherRoot := new(fiat.SM2P256Element)
|
||||
otherRoot.Sub(otherRoot, y)
|
||||
cond := y.Bytes()[sm2p256ElementLength-1]&1 ^ b[0]&1
|
||||
y.Select(otherRoot, y, int(cond))
|
||||
p.x.Set(x)
|
||||
p.y.Set(y)
|
||||
p.z.One()
|
||||
return p, nil
|
||||
default:
|
||||
return nil, errors.New("invalid SM2P256 point encoding")
|
||||
}
|
||||
}
|
||||
|
||||
// sm2p256Polynomial sets y2 to x³ - 3x + b, and returns y2.
|
||||
func sm2p256Polynomial(y2, x *fiat.SM2P256Element) *fiat.SM2P256Element {
|
||||
y2.Square(x)
|
||||
y2.Mul(y2, x)
|
||||
threeX := new(fiat.SM2P256Element).Add(x, x)
|
||||
threeX.Add(threeX, x)
|
||||
y2.Sub(y2, threeX)
|
||||
return y2.Add(y2, sm2p256B)
|
||||
}
|
||||
func sm2p256CheckOnCurve(x, y *fiat.SM2P256Element) error {
|
||||
// y² = x³ - 3x + b
|
||||
rhs := sm2p256Polynomial(new(fiat.SM2P256Element), x)
|
||||
lhs := new(fiat.SM2P256Element).Square(y)
|
||||
if rhs.Equal(lhs) != 1 {
|
||||
return errors.New("SM2P256 point not on curve")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Bytes returns the uncompressed or infinity encoding of p, as specified in
|
||||
// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
|
||||
// infinity is shorter than all other encodings.
|
||||
func (p *SM2P256Point) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [1 + 2*sm2p256ElementLength]byte
|
||||
return p.bytes(&out)
|
||||
}
|
||||
func (p *SM2P256Point) bytes(out *[1 + 2*sm2p256ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
zinv := new(fiat.SM2P256Element).Invert(p.z)
|
||||
x := new(fiat.SM2P256Element).Mul(p.x, zinv)
|
||||
y := new(fiat.SM2P256Element).Mul(p.y, zinv)
|
||||
buf := append(out[:0], 4)
|
||||
buf = append(buf, x.Bytes()...)
|
||||
buf = append(buf, y.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
// BytesCompressed returns the compressed or infinity encoding of p, as
|
||||
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
|
||||
// point at infinity is shorter than all other encodings.
|
||||
func (p *SM2P256Point) BytesCompressed() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [1 + sm2p256ElementLength]byte
|
||||
return p.bytesCompressed(&out)
|
||||
}
|
||||
func (p *SM2P256Point) bytesCompressed(out *[1 + sm2p256ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
zinv := new(fiat.SM2P256Element).Invert(p.z)
|
||||
x := new(fiat.SM2P256Element).Mul(p.x, zinv)
|
||||
y := new(fiat.SM2P256Element).Mul(p.y, zinv)
|
||||
// Encode the sign of the y coordinate (indicated by the least significant
|
||||
// bit) as the encoding type (2 or 3).
|
||||
buf := append(out[:0], 2)
|
||||
buf[0] |= y.Bytes()[sm2p256ElementLength-1] & 1
|
||||
buf = append(buf, x.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
// Add sets q = p1 + p2, and returns q. The points may overlap.
|
||||
func (q *SM2P256Point) Add(p1, p2 *SM2P256Point) *SM2P256Point {
|
||||
// Complete addition formula for a = -3 from "Complete addition formulas for
|
||||
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
|
||||
t0 := new(fiat.SM2P256Element).Mul(p1.x, p2.x) // t0 := X1 * X2
|
||||
t1 := new(fiat.SM2P256Element).Mul(p1.y, p2.y) // t1 := Y1 * Y2
|
||||
t2 := new(fiat.SM2P256Element).Mul(p1.z, p2.z) // t2 := Z1 * Z2
|
||||
t3 := new(fiat.SM2P256Element).Add(p1.x, p1.y) // t3 := X1 + Y1
|
||||
t4 := new(fiat.SM2P256Element).Add(p2.x, p2.y) // t4 := X2 + Y2
|
||||
t3.Mul(t3, t4) // t3 := t3 * t4
|
||||
t4.Add(t0, t1) // t4 := t0 + t1
|
||||
t3.Sub(t3, t4) // t3 := t3 - t4
|
||||
t4.Add(p1.y, p1.z) // t4 := Y1 + Z1
|
||||
x3 := new(fiat.SM2P256Element).Add(p2.y, p2.z) // X3 := Y2 + Z2
|
||||
t4.Mul(t4, x3) // t4 := t4 * X3
|
||||
x3.Add(t1, t2) // X3 := t1 + t2
|
||||
t4.Sub(t4, x3) // t4 := t4 - X3
|
||||
x3.Add(p1.x, p1.z) // X3 := X1 + Z1
|
||||
y3 := new(fiat.SM2P256Element).Add(p2.x, p2.z) // Y3 := X2 + Z2
|
||||
x3.Mul(x3, y3) // X3 := X3 * Y3
|
||||
y3.Add(t0, t2) // Y3 := t0 + t2
|
||||
y3.Sub(x3, y3) // Y3 := X3 - Y3
|
||||
z3 := new(fiat.SM2P256Element).Mul(sm2p256B, t2) // Z3 := b * t2
|
||||
x3.Sub(y3, z3) // X3 := Y3 - Z3
|
||||
z3.Add(x3, x3) // Z3 := X3 + X3
|
||||
x3.Add(x3, z3) // X3 := X3 + Z3
|
||||
z3.Sub(t1, x3) // Z3 := t1 - X3
|
||||
x3.Add(t1, x3) // X3 := t1 + X3
|
||||
y3.Mul(sm2p256B, y3) // Y3 := b * Y3
|
||||
t1.Add(t2, t2) // t1 := t2 + t2
|
||||
t2.Add(t1, t2) // t2 := t1 + t2
|
||||
y3.Sub(y3, t2) // Y3 := Y3 - t2
|
||||
y3.Sub(y3, t0) // Y3 := Y3 - t0
|
||||
t1.Add(y3, y3) // t1 := Y3 + Y3
|
||||
y3.Add(t1, y3) // Y3 := t1 + Y3
|
||||
t1.Add(t0, t0) // t1 := t0 + t0
|
||||
t0.Add(t1, t0) // t0 := t1 + t0
|
||||
t0.Sub(t0, t2) // t0 := t0 - t2
|
||||
t1.Mul(t4, y3) // t1 := t4 * Y3
|
||||
t2.Mul(t0, y3) // t2 := t0 * Y3
|
||||
y3.Mul(x3, z3) // Y3 := X3 * Z3
|
||||
y3.Add(y3, t2) // Y3 := Y3 + t2
|
||||
x3.Mul(t3, x3) // X3 := t3 * X3
|
||||
x3.Sub(x3, t1) // X3 := X3 - t1
|
||||
z3.Mul(t4, z3) // Z3 := t4 * Z3
|
||||
t1.Mul(t3, t0) // t1 := t3 * t0
|
||||
z3.Add(z3, t1) // Z3 := Z3 + t1
|
||||
q.x.Set(x3)
|
||||
q.y.Set(y3)
|
||||
q.z.Set(z3)
|
||||
return q
|
||||
}
|
||||
|
||||
// Double sets q = p + p, and returns q. The points may overlap.
|
||||
func (q *SM2P256Point) Double(p *SM2P256Point) *SM2P256Point {
|
||||
// Complete addition formula for a = -3 from "Complete addition formulas for
|
||||
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
|
||||
t0 := new(fiat.SM2P256Element).Square(p.x) // t0 := X ^ 2
|
||||
t1 := new(fiat.SM2P256Element).Square(p.y) // t1 := Y ^ 2
|
||||
t2 := new(fiat.SM2P256Element).Square(p.z) // t2 := Z ^ 2
|
||||
t3 := new(fiat.SM2P256Element).Mul(p.x, p.y) // t3 := X * Y
|
||||
t3.Add(t3, t3) // t3 := t3 + t3
|
||||
z3 := new(fiat.SM2P256Element).Mul(p.x, p.z) // Z3 := X * Z
|
||||
z3.Add(z3, z3) // Z3 := Z3 + Z3
|
||||
y3 := new(fiat.SM2P256Element).Mul(sm2p256B, t2) // Y3 := b * t2
|
||||
y3.Sub(y3, z3) // Y3 := Y3 - Z3
|
||||
x3 := new(fiat.SM2P256Element).Add(y3, y3) // X3 := Y3 + Y3
|
||||
y3.Add(x3, y3) // Y3 := X3 + Y3
|
||||
x3.Sub(t1, y3) // X3 := t1 - Y3
|
||||
y3.Add(t1, y3) // Y3 := t1 + Y3
|
||||
y3.Mul(x3, y3) // Y3 := X3 * Y3
|
||||
x3.Mul(x3, t3) // X3 := X3 * t3
|
||||
t3.Add(t2, t2) // t3 := t2 + t2
|
||||
t2.Add(t2, t3) // t2 := t2 + t3
|
||||
z3.Mul(sm2p256B, z3) // Z3 := b * Z3
|
||||
z3.Sub(z3, t2) // Z3 := Z3 - t2
|
||||
z3.Sub(z3, t0) // Z3 := Z3 - t0
|
||||
t3.Add(z3, z3) // t3 := Z3 + Z3
|
||||
z3.Add(z3, t3) // Z3 := Z3 + t3
|
||||
t3.Add(t0, t0) // t3 := t0 + t0
|
||||
t0.Add(t3, t0) // t0 := t3 + t0
|
||||
t0.Sub(t0, t2) // t0 := t0 - t2
|
||||
t0.Mul(t0, z3) // t0 := t0 * Z3
|
||||
y3.Add(y3, t0) // Y3 := Y3 + t0
|
||||
t0.Mul(p.y, p.z) // t0 := Y * Z
|
||||
t0.Add(t0, t0) // t0 := t0 + t0
|
||||
z3.Mul(t0, z3) // Z3 := t0 * Z3
|
||||
x3.Sub(x3, z3) // X3 := X3 - Z3
|
||||
z3.Mul(t0, t1) // Z3 := t0 * t1
|
||||
z3.Add(z3, z3) // Z3 := Z3 + Z3
|
||||
z3.Add(z3, z3) // Z3 := Z3 + Z3
|
||||
q.x.Set(x3)
|
||||
q.y.Set(y3)
|
||||
q.z.Set(z3)
|
||||
return q
|
||||
}
|
||||
|
||||
// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
|
||||
func (q *SM2P256Point) Select(p1, p2 *SM2P256Point, cond int) *SM2P256Point {
|
||||
q.x.Select(p1.x, p2.x, cond)
|
||||
q.y.Select(p1.y, p2.y, cond)
|
||||
q.z.Select(p1.z, p2.z, cond)
|
||||
return q
|
||||
}
|
||||
|
||||
// A sm2p256Table holds the first 15 multiples of a point at offset -1, so [1]P
|
||||
// is at table[0], [15]P is at table[14], and [0]P is implicitly the identity
|
||||
// point.
|
||||
type sm2p256Table [15]*SM2P256Point
|
||||
|
||||
// Select selects the n-th multiple of the table base point into p. It works in
|
||||
// constant time by iterating over every entry of the table. n must be in [0, 15].
|
||||
func (table *sm2p256Table) Select(p *SM2P256Point, n uint8) {
|
||||
if n >= 16 {
|
||||
panic("nistec: internal error: sm2p256Table called with out-of-bounds value")
|
||||
}
|
||||
p.Set(NewSM2P256Point())
|
||||
for i := uint8(1); i < 16; i++ {
|
||||
cond := subtle.ConstantTimeByteEq(i, n)
|
||||
p.Select(table[i-1], p, cond)
|
||||
}
|
||||
}
|
||||
|
||||
// ScalarMult sets p = scalar * q, and returns p.
|
||||
func (p *SM2P256Point) ScalarMult(q *SM2P256Point, scalar []byte) (*SM2P256Point, error) {
|
||||
// Compute a sm2p256Table for the base point q. The explicit NewSM2P256Point
|
||||
// calls get inlined, letting the allocations live on the stack.
|
||||
var table = sm2p256Table{NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(),
|
||||
NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(),
|
||||
NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(),
|
||||
NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point()}
|
||||
table[0].Set(q)
|
||||
for i := 1; i < 15; i += 2 {
|
||||
table[i].Double(table[i/2])
|
||||
table[i+1].Add(table[i], q)
|
||||
}
|
||||
// Instead of doing the classic double-and-add chain, we do it with a
|
||||
// four-bit window: we double four times, and then add [0-15]P.
|
||||
t := NewSM2P256Point()
|
||||
p.Set(NewSM2P256Point())
|
||||
for i, byte := range scalar {
|
||||
// No need to double on the first iteration, as p is the identity at
|
||||
// this point, and [N]∞ = ∞.
|
||||
if i != 0 {
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
}
|
||||
windowValue := byte >> 4
|
||||
table.Select(t, windowValue)
|
||||
p.Add(p, t)
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
p.Double(p)
|
||||
windowValue = byte & 0b1111
|
||||
table.Select(t, windowValue)
|
||||
p.Add(p, t)
|
||||
}
|
||||
return p, nil
|
||||
}
|
||||
|
||||
var sm2p256GeneratorTable *[sm2p256ElementLength * 2]sm2p256Table
|
||||
var sm2p256GeneratorTableOnce sync.Once
|
||||
|
||||
// generatorTable returns a sequence of sm2p256Tables. The first table contains
|
||||
// multiples of G. Each successive table is the previous table doubled four
|
||||
// times.
|
||||
func (p *SM2P256Point) generatorTable() *[sm2p256ElementLength * 2]sm2p256Table {
|
||||
sm2p256GeneratorTableOnce.Do(func() {
|
||||
sm2p256GeneratorTable = new([sm2p256ElementLength * 2]sm2p256Table)
|
||||
base := NewSM2P256Generator()
|
||||
for i := 0; i < sm2p256ElementLength*2; i++ {
|
||||
sm2p256GeneratorTable[i][0] = NewSM2P256Point().Set(base)
|
||||
for j := 1; j < 15; j++ {
|
||||
sm2p256GeneratorTable[i][j] = NewSM2P256Point().Add(sm2p256GeneratorTable[i][j-1], base)
|
||||
}
|
||||
base.Double(base)
|
||||
base.Double(base)
|
||||
base.Double(base)
|
||||
base.Double(base)
|
||||
}
|
||||
})
|
||||
return sm2p256GeneratorTable
|
||||
}
|
||||
|
||||
// ScalarBaseMult sets p = scalar * B, where B is the canonical generator, and
|
||||
// returns p.
|
||||
func (p *SM2P256Point) ScalarBaseMult(scalar []byte) (*SM2P256Point, error) {
|
||||
if len(scalar) != sm2p256ElementLength {
|
||||
return nil, errors.New("invalid scalar length")
|
||||
}
|
||||
tables := p.generatorTable()
|
||||
// This is also a scalar multiplication with a four-bit window like in
|
||||
// ScalarMult, but in this case the doublings are precomputed. The value
|
||||
// [windowValue]G added at iteration k would normally get doubled
|
||||
// (totIterations-k)×4 times, but with a larger precomputation we can
|
||||
// instead add [2^((totIterations-k)×4)][windowValue]G and avoid the
|
||||
// doublings between iterations.
|
||||
t := NewSM2P256Point()
|
||||
p.Set(NewSM2P256Point())
|
||||
tableIndex := len(tables) - 1
|
||||
for _, byte := range scalar {
|
||||
windowValue := byte >> 4
|
||||
tables[tableIndex].Select(t, windowValue)
|
||||
p.Add(p, t)
|
||||
tableIndex--
|
||||
windowValue = byte & 0b1111
|
||||
tables[tableIndex].Select(t, windowValue)
|
||||
p.Add(p, t)
|
||||
tableIndex--
|
||||
}
|
||||
return p, nil
|
||||
}
|
||||
|
||||
// sm2p256Sqrt sets e to a square root of x. If x is not a square, sm2p256Sqrt returns
|
||||
// false and e is unchanged. e and x can overlap.
|
||||
func sm2p256Sqrt(e, x *fiat.SM2P256Element) (isSquare bool) {
|
||||
candidate := new(fiat.SM2P256Element)
|
||||
sm2p256SqrtCandidate(candidate, x)
|
||||
square := new(fiat.SM2P256Element).Square(candidate)
|
||||
if square.Equal(x) != 1 {
|
||||
return false
|
||||
}
|
||||
e.Set(candidate)
|
||||
return true
|
||||
}
|
||||
|
||||
// sm2p256SqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
|
||||
func sm2p256SqrtCandidate(z, x *fiat.SM2P256Element) {
|
||||
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
|
||||
//
|
||||
// The sequence of 13 multiplications and 253 squarings is derived from the
|
||||
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||||
//
|
||||
// _10 = 2*1
|
||||
// _11 = 1 + _10
|
||||
// _110 = 2*_11
|
||||
// _111 = 1 + _110
|
||||
// _1110 = 2*_111
|
||||
// _1111 = 1 + _1110
|
||||
// _11110 = 2*_1111
|
||||
// _111100 = 2*_11110
|
||||
// _1111000 = 2*_111100
|
||||
// i19 = (_1111000 << 3 + _111100) << 5 + _1111000
|
||||
// x31 = (i19 << 2 + _11110) << 14 + i19 + _111
|
||||
// i42 = x31 << 4
|
||||
// i73 = i42 << 31
|
||||
// i74 = i42 + i73
|
||||
// i171 = (i73 << 32 + i74) << 62 + i74 + _1111
|
||||
// return (i171 << 32 + 1) << 62
|
||||
//
|
||||
var t0 = new(fiat.SM2P256Element)
|
||||
var t1 = new(fiat.SM2P256Element)
|
||||
var t2 = new(fiat.SM2P256Element)
|
||||
var t3 = new(fiat.SM2P256Element)
|
||||
var t4 = new(fiat.SM2P256Element)
|
||||
|
||||
z.Square(x)
|
||||
z.Mul(x, z)
|
||||
z.Square(z)
|
||||
t0.Mul(x, z)
|
||||
z.Square(t0)
|
||||
z.Mul(x, z)
|
||||
t2.Square(z)
|
||||
t3.Square(t2)
|
||||
t1.Square(t3)
|
||||
t4.Square(t1)
|
||||
for s := 1; s < 3; s++ {
|
||||
t4.Square(t4)
|
||||
}
|
||||
t3.Mul(t3, t4)
|
||||
for s := 0; s < 5; s++ {
|
||||
t3.Square(t3)
|
||||
}
|
||||
t1.Mul(t1, t3)
|
||||
t3.Square(t1)
|
||||
for s := 1; s < 2; s++ {
|
||||
t3.Square(t3)
|
||||
}
|
||||
t2.Mul(t2, t3)
|
||||
for s := 0; s < 14; s++ {
|
||||
t2.Square(t2)
|
||||
}
|
||||
t1.Mul(t1, t2)
|
||||
t0.Mul(t0, t1)
|
||||
for s := 0; s < 4; s++ {
|
||||
t0.Square(t0)
|
||||
}
|
||||
t1.Square(t0)
|
||||
for s := 1; s < 31; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t0.Mul(t0, t1)
|
||||
for s := 0; s < 32; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t1.Mul(t0, t1)
|
||||
for s := 0; s < 62; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t0.Mul(t0, t1)
|
||||
z.Mul(z, t0)
|
||||
for s := 0; s < 32; s++ {
|
||||
z.Square(z)
|
||||
}
|
||||
z.Mul(x, z)
|
||||
for s := 0; s < 62; s++ {
|
||||
z.Square(z)
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user