pkcs7: polish, improve maintainability

This commit is contained in:
Sun Yimin 2024-06-21 18:00:21 +08:00 committed by GitHub
parent dc66ca673e
commit 9382886282
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 397 additions and 343 deletions

View File

@ -24,6 +24,12 @@ SM2既然是椭圆曲线公钥密码算法它就和NIST P系列椭圆曲线
**注**最新的阿里KMS支持ECIES难道客户有这个需求
ECIES_DH_SHA_1_XOR_HMAC遵循[SEC 1: Elliptic Curve Cryptography, Version 2.0](https://www.secg.org/sec1-v2.pdf)标准密钥协商算法采用ECDH密钥派生算法采用 KDF2 with SHA-1MAC算法采用HMAC-SHA-1对称加密算法采用XOR。
**业界对RSA非对称加密的安全性担忧与日俱增**
* [The Marvin Attack](https://people.redhat.com/~hkario/marvin/)
* [CVE-2023-45287 Detail](https://nvd.nist.gov/vuln/detail/CVE-2023-45287)
* [Vulnerability Report: GO-2023-2375](https://pkg.go.dev/vuln/GO-2023-2375)
* [Seriously, stop using RSA](https://blog.trailofbits.com/2019/07/08/fuck-rsa/)
## SM2公私钥对
SM2公私钥对的话要么是自己产生要么是别的系统产生后通过某种方式传输给您的。

View File

@ -115,7 +115,7 @@ func (c *cbcBlockCipher) Encrypt(key, plaintext []byte) (*pkix.AlgorithmIdentifi
if err != nil {
return nil, nil, err
}
ciphertext, err := cbcEncrypt(block, key, iv, plaintext)
ciphertext, err := cbcEncrypt(block, iv, plaintext)
if err != nil {
return nil, nil, err
}
@ -144,10 +144,10 @@ func (c *cbcBlockCipher) Decrypt(key []byte, parameters *asn1.RawValue, encrypte
return nil, errors.New("pkcs: invalid cipher parameters")
}
return cbcDecrypt(block, key, iv, encryptedKey)
return cbcDecrypt(block, iv, encryptedKey)
}
func cbcEncrypt(block cipher.Block, key, iv, plaintext []byte) ([]byte, error) {
func cbcEncrypt(block cipher.Block, iv, plaintext []byte) ([]byte, error) {
mode := cipher.NewCBCEncrypter(block, iv)
pkcs7 := padding.NewPKCS7Padding(uint(block.BlockSize()))
plainText := pkcs7.Pad(plaintext)
@ -156,7 +156,7 @@ func cbcEncrypt(block cipher.Block, key, iv, plaintext []byte) ([]byte, error) {
return ciphertext, nil
}
func cbcDecrypt(block cipher.Block, key, iv, ciphertext []byte) ([]byte, error) {
func cbcDecrypt(block cipher.Block, iv, ciphertext []byte) ([]byte, error) {
mode := cipher.NewCBCDecrypter(block, iv)
pkcs7 := padding.NewPKCS7Padding(uint(block.BlockSize()))
plaintext := make([]byte, len(ciphertext))

View File

@ -1,187 +1,35 @@
package pkcs7
import (
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"crypto/x509/pkix"
"encoding/asn1"
"errors"
"github.com/emmansun/gmsm/pkcs"
"github.com/emmansun/gmsm/sm2"
"github.com/emmansun/gmsm/smx509"
)
type envelopedData struct {
Version int
RecipientInfos []recipientInfo `asn1:"set"`
EncryptedContentInfo encryptedContentInfo
}
type encryptedData struct {
Version int
EncryptedContentInfo encryptedContentInfo
}
type recipientInfo struct {
Version int
IssuerAndSerialNumber issuerAndSerial
KeyEncryptionAlgorithm pkix.AlgorithmIdentifier
EncryptedKey []byte
}
type encryptedContentInfo struct {
ContentType asn1.ObjectIdentifier
ContentEncryptionAlgorithm pkix.AlgorithmIdentifier
EncryptedContent asn1.RawValue `asn1:"tag:0,optional"`
}
func (data envelopedData) GetRecipient(cert *smx509.Certificate) *recipientInfo {
for _, recp := range data.RecipientInfos {
if isCertMatchForIssuerAndSerial(cert, recp.IssuerAndSerialNumber) {
return &recp
}
}
return nil
}
func (data envelopedData) GetEncryptedContentInfo() *encryptedContentInfo {
return &data.EncryptedContentInfo
}
// ErrUnsupportedEncryptionAlgorithm is returned when attempting to encrypt
// content with an unsupported algorithm.
var ErrUnsupportedEncryptionAlgorithm = errors.New("pkcs7: cannot encrypt content: only DES-CBC, AES-CBC, AES-GCM, SM4-CBC and SM4-GCM supported")
// ErrPSKNotProvided is returned when attempting to encrypt
// using a PSK without actually providing the PSK.
var ErrPSKNotProvided = errors.New("pkcs7: cannot encrypt content: PSK not provided")
// Encrypt creates and returns an envelope data PKCS7 structure with encrypted
// recipient keys for each recipient public key.
//
// # The algorithm used to perform encryption is determined by the argument cipher
//
// TODO(fullsailor): Add support for encrypting content with other algorithms
func Encrypt(cipher pkcs.Cipher, content []byte, recipients []*smx509.Certificate) ([]byte, error) {
return encrypt(cipher, content, recipients, false, false)
}
// EncryptSM creates and returns an envelope data PKCS7 structure with encrypted
// recipient keys for each recipient public key.
// The OIDs use GM/T 0010 - 2012 set and the encrypted key use ASN.1 format.
//
// The algorithm used to perform encryption is determined by the argument cipher
func EncryptSM(cipher pkcs.Cipher, content []byte, recipients []*smx509.Certificate) ([]byte, error) {
return encrypt(cipher, content, recipients, true, false)
}
// EncryptCFCA creates and returns an envelope data PKCS7 structure with encrypted
// recipient keys for each recipient public key.
// The OIDs use GM/T 0010 - 2012 set and the encrypted key use C1C2C3 format and without 0x4 prefix.
//
// The algorithm used to perform encryption is determined by the argument cipher
func EncryptCFCA(cipher pkcs.Cipher, content []byte, recipients []*smx509.Certificate) ([]byte, error) {
return encrypt(cipher, content, recipients, true, true)
}
func encrypt(cipher pkcs.Cipher, content []byte, recipients []*smx509.Certificate, isSM, isCFCA bool) ([]byte, error) {
var key []byte
var err error
// Create key
key = make([]byte, cipher.KeySize())
_, err = rand.Read(key)
if err != nil {
return nil, err
}
id, ciphertext, err := cipher.Encrypt(key, content)
if err != nil {
return nil, err
}
envelope := envelopedData{
Version: 0,
EncryptedContentInfo: encryptedContentInfo{
ContentType: OIDData,
ContentEncryptionAlgorithm: *id,
EncryptedContent: marshalEncryptedContent(ciphertext),
},
}
if isSM {
envelope.Version = 1 // follow GB/T 35275-2017 9.1
envelope.EncryptedContentInfo.ContentType = SM2OIDData
}
// Prepare each recipient's encrypted cipher key
recipientInfos := make([]recipientInfo, len(recipients))
for i, recipient := range recipients {
encrypted, err := encryptKey(key, recipient, isCFCA)
if err != nil {
return nil, err
}
ias, err := cert2issuerAndSerial(recipient)
if err != nil {
return nil, err
}
var keyEncryptionAlgorithm asn1.ObjectIdentifier = OIDEncryptionAlgorithmRSA
if recipient.SignatureAlgorithm == smx509.SM2WithSM3 {
keyEncryptionAlgorithm = OIDKeyEncryptionAlgorithmSM2
} else if isSM {
return nil, errors.New("pkcs7: Shangmi does not support RSA")
}
info := recipientInfo{
Version: 0,
IssuerAndSerialNumber: ias,
KeyEncryptionAlgorithm: pkix.AlgorithmIdentifier{
Algorithm: keyEncryptionAlgorithm,
},
EncryptedKey: encrypted,
}
if isSM {
info.Version = 1 // follow GB/T 35275-2017 9.1
}
recipientInfos[i] = info
}
envelope.RecipientInfos = recipientInfos
innerContent, err := asn1.Marshal(envelope)
if err != nil {
return nil, err
}
// Prepare outer payload structure
wrapper := contentInfo{
ContentType: OIDEnvelopedData,
Content: asn1.RawValue{Class: asn1.ClassContextSpecific, Tag: 0, IsCompound: true, Bytes: innerContent},
}
if isSM {
wrapper.ContentType = SM2OIDEnvelopedData
}
return asn1.Marshal(wrapper)
}
// EncryptUsingPSK creates and returns an encrypted data PKCS7 structure,
// encrypted using caller provided pre-shared secret.
func EncryptUsingPSK(cipher pkcs.Cipher, content []byte, key []byte) ([]byte, error) {
return encryptUsingPSK(false, cipher, content, key)
return encryptUsingPSK(cipher, content, key, []asn1.ObjectIdentifier{OIDData, OIDEncryptedData}, 0)
}
// EncryptSMUsingPSK creates and returns an encrypted data PKCS7 structure,
// encrypted using caller provided pre-shared secret.
// This method uses China Standard OID
func EncryptSMUsingPSK(cipher pkcs.Cipher, content []byte, key []byte) ([]byte, error) {
return encryptUsingPSK(true, cipher, content, key)
return encryptUsingPSK(cipher, content, key, []asn1.ObjectIdentifier{SM2OIDData, SM2OIDEncryptedData}, 1)
}
func encryptUsingPSK(isSM bool, cipher pkcs.Cipher, content []byte, key []byte) ([]byte, error) {
func encryptUsingPSK(cipher pkcs.Cipher, content []byte, key []byte, contentTypes []asn1.ObjectIdentifier, version int) ([]byte, error) {
var err error
if key == nil {
@ -195,16 +43,8 @@ func encryptUsingPSK(isSM bool, cipher pkcs.Cipher, content []byte, key []byte)
// Prepare encrypted-data content
ed := encryptedData{
Version: 0,
EncryptedContentInfo: encryptedContentInfo{
ContentType: OIDData,
ContentEncryptionAlgorithm: *id,
EncryptedContent: marshalEncryptedContent(ciphertext),
},
}
if isSM {
ed.Version = 1 // follow GB/T 35275-2017 9.1
ed.EncryptedContentInfo.ContentType = SM2OIDData
Version: version,
EncryptedContentInfo: newEncryptedContent(contentTypes[0], id, marshalEncryptedContent(ciphertext)),
}
innerContent, err := asn1.Marshal(ed)
@ -212,38 +52,11 @@ func encryptUsingPSK(isSM bool, cipher pkcs.Cipher, content []byte, key []byte)
return nil, err
}
var contentType asn1.ObjectIdentifier = OIDEncryptedData
if isSM {
contentType = SM2OIDEncryptedData
}
// Prepare outer payload structure
wrapper := contentInfo{
ContentType: contentType,
ContentType: contentTypes[1],
Content: asn1.RawValue{Class: asn1.ClassContextSpecific, Tag: 0, IsCompound: true, Bytes: innerContent},
}
return asn1.Marshal(wrapper)
}
func marshalEncryptedContent(content []byte) asn1.RawValue {
asn1Content, _ := asn1.Marshal(content)
return asn1.RawValue{Tag: 0, Class: asn1.ClassContextSpecific, Bytes: asn1Content, IsCompound: true}
}
func encryptKey(key []byte, recipient *smx509.Certificate, isCFCA bool) ([]byte, error) {
if pub, ok := recipient.PublicKey.(*rsa.PublicKey); ok {
return rsa.EncryptPKCS1v15(rand.Reader, pub, key)
}
if pub, ok := recipient.PublicKey.(*ecdsa.PublicKey); ok && pub.Curve == sm2.P256() {
if isCFCA {
encryptedKey, err := sm2.Encrypt(rand.Reader, pub, key, sm2.NewPlainEncrypterOpts(sm2.MarshalUncompressed, sm2.C1C2C3))
if err != nil {
return nil, err
}
return encryptedKey[1:], nil
} else {
return sm2.EncryptASN1(rand.Reader, pub, key)
}
}
return nil, errors.New("pkcs7: only supports RSA/SM2 key")
}

View File

@ -2,131 +2,11 @@ package pkcs7
import (
"bytes"
"crypto/x509"
"encoding/pem"
"os"
"testing"
"github.com/emmansun/gmsm/pkcs"
"github.com/emmansun/gmsm/smx509"
)
func TestEncrypt(t *testing.T) {
ciphers := []pkcs.Cipher{
pkcs.DESCBC,
pkcs.TripleDESCBC,
pkcs.SM4CBC,
pkcs.SM4GCM,
pkcs.AES128CBC,
pkcs.AES192CBC,
pkcs.AES256CBC,
pkcs.AES128GCM,
pkcs.AES192GCM,
pkcs.AES256GCM,
}
sigalgs := []x509.SignatureAlgorithm{
x509.SHA1WithRSA,
x509.SHA256WithRSA,
x509.SHA512WithRSA,
smx509.SM2WithSM3,
}
for _, cipher := range ciphers {
for _, sigalg := range sigalgs {
plaintext := []byte("Hello Secret World!")
cert, err := createTestCertificate(sigalg)
if err != nil {
t.Fatal(err)
}
encrypted, err := Encrypt(cipher, plaintext, []*smx509.Certificate{cert.Certificate})
if err != nil {
t.Fatal(err)
}
p7, err := Parse(encrypted)
if err != nil {
t.Fatalf("cannot Parse encrypted result: %s", err)
}
result, err := p7.Decrypt(cert.Certificate, *cert.PrivateKey)
if err != nil {
t.Fatalf("cannot Decrypt encrypted result: %s", err)
}
if !bytes.Equal(plaintext, result) {
t.Errorf("encrypted data does not match plaintext:\n\tExpected: %s\n\tActual: %s", plaintext, result)
}
}
}
}
func TestEncryptSM(t *testing.T) {
ciphers := []pkcs.Cipher{
pkcs.SM4CBC,
pkcs.SM4GCM,
}
sigalgs := []x509.SignatureAlgorithm{
smx509.SM2WithSM3,
}
for _, cipher := range ciphers {
for _, sigalg := range sigalgs {
plaintext := []byte("Hello Secret World!")
cert, err := createTestCertificate(sigalg)
if err != nil {
t.Fatal(err)
}
encrypted, err := EncryptSM(cipher, plaintext, []*smx509.Certificate{cert.Certificate})
if err != nil {
t.Fatal(err)
}
pem.Encode(os.Stdout, &pem.Block{Type: "PKCS7", Bytes: encrypted})
p7, err := Parse(encrypted)
if err != nil {
t.Fatalf("cannot Parse encrypted result: %s", err)
}
result, err := p7.Decrypt(cert.Certificate, *cert.PrivateKey)
if err != nil {
t.Fatalf("cannot Decrypt encrypted result: %s", err)
}
if !bytes.Equal(plaintext, result) {
t.Errorf("encrypted data does not match plaintext:\n\tExpected: %s\n\tActual: %s", plaintext, result)
}
}
}
}
func TestEncryptCFCA(t *testing.T) {
ciphers := []pkcs.Cipher{
pkcs.SM4,
pkcs.SM4CBC,
pkcs.SM4GCM,
}
sigalgs := []x509.SignatureAlgorithm{
smx509.SM2WithSM3,
}
for _, cipher := range ciphers {
for _, sigalg := range sigalgs {
plaintext := []byte("Hello Secret World!")
cert, err := createTestCertificate(sigalg)
if err != nil {
t.Fatal(err)
}
encrypted, err := EncryptCFCA(cipher, plaintext, []*smx509.Certificate{cert.Certificate})
if err != nil {
t.Fatal(err)
}
pem.Encode(os.Stdout, &pem.Block{Type: "PKCS7", Bytes: encrypted})
p7, err := Parse(encrypted)
if err != nil {
t.Fatalf("cannot Parse encrypted result: %s", err)
}
result, err := p7.DecryptCFCA(cert.Certificate, *cert.PrivateKey)
if err != nil {
t.Fatalf("cannot Decrypt encrypted result: %s", err)
}
if !bytes.Equal(plaintext, result) {
t.Errorf("encrypted data does not match plaintext:\n\tExpected: %s\n\tActual: %s", plaintext, result)
}
}
}
}
func TestEncryptUsingPSK(t *testing.T) {
ciphers := []pkcs.Cipher{
pkcs.DESCBC,

237
pkcs7/envelope.go Normal file
View File

@ -0,0 +1,237 @@
package pkcs7
import (
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"crypto/x509/pkix"
"encoding/asn1"
"errors"
"github.com/emmansun/gmsm/pkcs"
"github.com/emmansun/gmsm/sm2"
"github.com/emmansun/gmsm/smx509"
)
type EnvelopedData struct {
ed envelopedData
key []byte
contentType asn1.ObjectIdentifier
encryptedContentType asn1.ObjectIdentifier
}
type envelopedData struct {
Version int
RecipientInfos []recipientInfo `asn1:"set"`
EncryptedContentInfo encryptedContentInfo
}
type recipientInfo struct {
Version int
IssuerAndSerialNumber issuerAndSerial
KeyEncryptionAlgorithm pkix.AlgorithmIdentifier
EncryptedKey []byte
}
type encryptedContentInfo struct {
ContentType asn1.ObjectIdentifier
ContentEncryptionAlgorithm pkix.AlgorithmIdentifier
EncryptedContent asn1.RawValue `asn1:"tag:0,optional"`
}
func (data envelopedData) GetRecipient(cert *smx509.Certificate) *recipientInfo {
for _, recp := range data.RecipientInfos {
if isCertMatchForIssuerAndSerial(cert, recp.IssuerAndSerialNumber) {
return &recp
}
}
return nil
}
func (data envelopedData) GetEncryptedContentInfo() *encryptedContentInfo {
return &data.EncryptedContentInfo
}
// ErrUnsupportedEncryptionAlgorithm is returned when attempting to encrypt
// content with an unsupported algorithm.
var ErrUnsupportedEncryptionAlgorithm = errors.New("pkcs7: cannot encrypt content: only DES-CBC, AES-CBC, AES-GCM, SM4-CBC and SM4-GCM supported")
// Encrypt creates and returns an envelope data PKCS7 structure with encrypted
// recipient keys for each recipient public key.
//
// # The algorithm used to perform encryption is determined by the argument cipher
//
// TODO(fullsailor): Add support for encrypting content with other algorithms
func Encrypt(cipher pkcs.Cipher, content []byte, recipients []*smx509.Certificate) ([]byte, error) {
ed, err := NewEnvelopedData(cipher, content)
if err != nil {
return nil, err
}
for _, recipient := range recipients {
if err := ed.AddRecipient(recipient, 0, func(cert *smx509.Certificate, key []byte) ([]byte, error) {
return encryptKey(key, cert, false)
}); err != nil {
return nil, err
}
}
return ed.Finish()
}
// EncryptSM creates and returns an envelope data PKCS7 structure with encrypted
// recipient keys for each recipient public key.
// The OIDs use GM/T 0010 - 2012 set and the encrypted key use ASN.1 format.
//
// The algorithm used to perform encryption is determined by the argument cipher
func EncryptSM(cipher pkcs.Cipher, content []byte, recipients []*smx509.Certificate) ([]byte, error) {
return encryptSM(cipher, content, recipients, false)
}
// EncryptCFCA creates and returns an envelope data PKCS7 structure with encrypted
// recipient keys for each recipient public key.
// The OIDs use GM/T 0010 - 2012 set and the encrypted key use C1C2C3 format and without 0x4 prefix.
//
// The algorithm used to perform encryption is determined by the argument cipher
func EncryptCFCA(cipher pkcs.Cipher, content []byte, recipients []*smx509.Certificate) ([]byte, error) {
return encryptSM(cipher, content, recipients, true)
}
func encryptSM(cipher pkcs.Cipher, content []byte, recipients []*smx509.Certificate, isLegacyCFCA bool) ([]byte, error) {
ed, err := NewSM2EnvelopedData(cipher, content)
if err != nil {
return nil, err
}
for _, recipient := range recipients {
if err := ed.AddRecipient(recipient, 1, func(cert *smx509.Certificate, key []byte) ([]byte, error) {
return encryptKey(key, cert, isLegacyCFCA)
}); err != nil {
return nil, err
}
}
return ed.Finish()
}
// NewEnvelopedData creates a new EnvelopedData structure with the provided cipher and content.
func NewEnvelopedData(cipher pkcs.Cipher, content []byte) (*EnvelopedData, error) {
var key []byte
var err error
// Create key
key = make([]byte, cipher.KeySize())
if _, err = rand.Read(key); err != nil {
return nil, err
}
id, ciphertext, err := cipher.Encrypt(key, content)
if err != nil {
return nil, err
}
ed := &EnvelopedData{}
ed.contentType = OIDEnvelopedData
ed.encryptedContentType = OIDData
ed.key = key
ed.ed = envelopedData{
Version: 0,
EncryptedContentInfo: newEncryptedContent(ed.encryptedContentType, id, marshalEncryptedContent(ciphertext)),
}
return ed, nil
}
// NewSM2EnvelopedData creates a new EnvelopedData structure with the provided cipher and content.
// The OIDs use GM/T 0010 - 2012 set.
func NewSM2EnvelopedData(cipher pkcs.Cipher, content []byte) (*EnvelopedData, error) {
var key []byte
var err error
// Create key
key = make([]byte, cipher.KeySize())
if _, err = rand.Read(key); err != nil {
return nil, err
}
id, ciphertext, err := cipher.Encrypt(key, content)
if err != nil {
return nil, err
}
ed := &EnvelopedData{}
ed.contentType = SM2OIDEnvelopedData
ed.encryptedContentType = SM2OIDData
ed.key = key
ed.ed = envelopedData{
Version: 1,
EncryptedContentInfo: newEncryptedContent(ed.encryptedContentType, id, marshalEncryptedContent(ciphertext)),
}
return ed, nil
}
// AddRecipient adds a recipient to the EnvelopedData structure.
func (ed *EnvelopedData) AddRecipient(cert *smx509.Certificate, version int, encryptKeyFunc func(cert *smx509.Certificate, key []byte) ([]byte, error)) error {
encrypted, err := encryptKeyFunc(cert, ed.key)
if err != nil {
return err
}
ias, err := cert2issuerAndSerial(cert)
if err != nil {
return err
}
var keyEncryptionAlgorithm asn1.ObjectIdentifier = OIDEncryptionAlgorithmRSA
if cert.SignatureAlgorithm == smx509.SM2WithSM3 {
keyEncryptionAlgorithm = OIDKeyEncryptionAlgorithmSM2
}
info := recipientInfo{
Version: version,
IssuerAndSerialNumber: ias,
KeyEncryptionAlgorithm: pkix.AlgorithmIdentifier{
Algorithm: keyEncryptionAlgorithm,
},
EncryptedKey: encrypted,
}
ed.ed.RecipientInfos = append(ed.ed.RecipientInfos, info)
return nil
}
// Finish creates the final PKCS7 structure.
func (ed *EnvelopedData) Finish() ([]byte, error) {
innerContent, err := asn1.Marshal(ed.ed)
if err != nil {
return nil, err
}
// Prepare outer payload structure
wrapper := contentInfo{
ContentType: ed.contentType,
Content: asn1.RawValue{Class: asn1.ClassContextSpecific, Tag: 0, IsCompound: true, Bytes: innerContent},
}
return asn1.Marshal(wrapper)
}
func newEncryptedContent(contentType asn1.ObjectIdentifier, alg *pkix.AlgorithmIdentifier, ciphertext asn1.RawValue) encryptedContentInfo {
return encryptedContentInfo{
ContentType: contentType,
ContentEncryptionAlgorithm: *alg,
EncryptedContent: ciphertext,
}
}
func marshalEncryptedContent(content []byte) asn1.RawValue {
asn1Content, _ := asn1.Marshal(content)
return asn1.RawValue{Tag: 0, Class: asn1.ClassContextSpecific, Bytes: asn1Content, IsCompound: true}
}
func encryptKey(key []byte, recipient *smx509.Certificate, isCFCA bool) ([]byte, error) {
if pub, ok := recipient.PublicKey.(*rsa.PublicKey); ok {
return rsa.EncryptPKCS1v15(rand.Reader, pub, key)
}
if pub, ok := recipient.PublicKey.(*ecdsa.PublicKey); ok && pub.Curve == sm2.P256() {
if isCFCA {
encryptedKey, err := sm2.Encrypt(rand.Reader, pub, key, sm2.NewPlainEncrypterOpts(sm2.MarshalUncompressed, sm2.C1C2C3))
if err != nil {
return nil, err
}
return encryptedKey[1:], nil
} else {
return sm2.EncryptASN1(rand.Reader, pub, key)
}
}
return nil, errors.New("pkcs7: only supports RSA/SM2 key")
}

128
pkcs7/envelope_test.go Normal file
View File

@ -0,0 +1,128 @@
package pkcs7
import (
"bytes"
"crypto/x509"
"encoding/pem"
"os"
"testing"
"github.com/emmansun/gmsm/pkcs"
"github.com/emmansun/gmsm/smx509"
)
func TestEncrypt(t *testing.T) {
ciphers := []pkcs.Cipher{
pkcs.DESCBC,
pkcs.TripleDESCBC,
pkcs.SM4CBC,
pkcs.SM4GCM,
pkcs.AES128CBC,
pkcs.AES192CBC,
pkcs.AES256CBC,
pkcs.AES128GCM,
pkcs.AES192GCM,
pkcs.AES256GCM,
}
sigalgs := []x509.SignatureAlgorithm{
x509.SHA1WithRSA,
x509.SHA256WithRSA,
x509.SHA512WithRSA,
smx509.SM2WithSM3,
}
for _, cipher := range ciphers {
for _, sigalg := range sigalgs {
plaintext := []byte("Hello Secret World!")
cert, err := createTestCertificate(sigalg)
if err != nil {
t.Fatal(err)
}
encrypted, err := Encrypt(cipher, plaintext, []*smx509.Certificate{cert.Certificate})
if err != nil {
t.Fatal(err)
}
p7, err := Parse(encrypted)
if err != nil {
t.Fatalf("cannot Parse encrypted result: %s", err)
}
result, err := p7.Decrypt(cert.Certificate, *cert.PrivateKey)
if err != nil {
t.Fatalf("cannot Decrypt encrypted result: %s", err)
}
if !bytes.Equal(plaintext, result) {
t.Errorf("encrypted data does not match plaintext:\n\tExpected: %s\n\tActual: %s", plaintext, result)
}
}
}
}
func TestEncryptSM(t *testing.T) {
ciphers := []pkcs.Cipher{
pkcs.SM4CBC,
pkcs.SM4GCM,
}
sigalgs := []x509.SignatureAlgorithm{
smx509.SM2WithSM3,
}
for _, cipher := range ciphers {
for _, sigalg := range sigalgs {
plaintext := []byte("Hello Secret World!")
cert, err := createTestCertificate(sigalg)
if err != nil {
t.Fatal(err)
}
encrypted, err := EncryptSM(cipher, plaintext, []*smx509.Certificate{cert.Certificate})
if err != nil {
t.Fatal(err)
}
pem.Encode(os.Stdout, &pem.Block{Type: "PKCS7", Bytes: encrypted})
p7, err := Parse(encrypted)
if err != nil {
t.Fatalf("cannot Parse encrypted result: %s", err)
}
result, err := p7.Decrypt(cert.Certificate, *cert.PrivateKey)
if err != nil {
t.Fatalf("cannot Decrypt encrypted result: %s", err)
}
if !bytes.Equal(plaintext, result) {
t.Errorf("encrypted data does not match plaintext:\n\tExpected: %s\n\tActual: %s", plaintext, result)
}
}
}
}
func TestEncryptCFCA(t *testing.T) {
ciphers := []pkcs.Cipher{
pkcs.SM4,
pkcs.SM4CBC,
pkcs.SM4GCM,
}
sigalgs := []x509.SignatureAlgorithm{
smx509.SM2WithSM3,
}
for _, cipher := range ciphers {
for _, sigalg := range sigalgs {
plaintext := []byte("Hello Secret World!")
cert, err := createTestCertificate(sigalg)
if err != nil {
t.Fatal(err)
}
encrypted, err := EncryptCFCA(cipher, plaintext, []*smx509.Certificate{cert.Certificate})
if err != nil {
t.Fatal(err)
}
pem.Encode(os.Stdout, &pem.Block{Type: "PKCS7", Bytes: encrypted})
p7, err := Parse(encrypted)
if err != nil {
t.Fatalf("cannot Parse encrypted result: %s", err)
}
result, err := p7.DecryptCFCA(cert.Certificate, *cert.PrivateKey)
if err != nil {
t.Fatalf("cannot Decrypt encrypted result: %s", err)
}
if !bytes.Equal(plaintext, result) {
t.Errorf("encrypted data does not match plaintext:\n\tExpected: %s\n\tActual: %s", plaintext, result)
}
}
}
}

View File

@ -22,9 +22,9 @@ type SignedData struct {
sd signedData
certs []*smx509.Certificate
data, messageDigest []byte
contentTypeOid asn1.ObjectIdentifier
digestOid asn1.ObjectIdentifier
encryptionOid asn1.ObjectIdentifier
isSM bool
}
// NewSignedData takes data and initializes a PKCS7 SignedData struct that is
@ -43,7 +43,7 @@ func NewSignedData(data []byte) (*SignedData, error) {
ContentInfo: ci,
Version: 1,
}
return &SignedData{sd: sd, data: data, digestOid: OIDDigestAlgorithmSHA1, isSM: false}, nil
return &SignedData{sd: sd, data: data, digestOid: OIDDigestAlgorithmSHA1, contentTypeOid: OIDSignedData}, nil
}
// NewSMSignedData takes data and initializes a PKCS7 SignedData struct that is
@ -56,7 +56,7 @@ func NewSMSignedData(data []byte) (*SignedData, error) {
}
sd.sd.ContentInfo.ContentType = SM2OIDData
sd.digestOid = OIDDigestAlgorithmSM3
sd.isSM = true
sd.contentTypeOid = SM2OIDSignedData
return sd, nil
}
@ -300,10 +300,7 @@ func (sd *SignedData) AddCertificate(cert *smx509.Certificate) {
// Detach removes content from the signed data struct to make it a detached signature.
// This must be called right before Finish()
func (sd *SignedData) Detach() {
sd.sd.ContentInfo = contentInfo{ContentType: OIDData}
if sd.isSM {
sd.sd.ContentInfo.ContentType = SM2OIDData
}
sd.sd.ContentInfo.Content = asn1.RawValue{}
}
// GetSignedData returns the private Signed Data
@ -321,12 +318,9 @@ func (sd *SignedData) Finish() ([]byte, error) {
return nil, err
}
outer := contentInfo{
ContentType: OIDSignedData,
ContentType: sd.contentTypeOid,
Content: asn1.RawValue{Class: asn1.ClassContextSpecific, Tag: 0, Bytes: inner, IsCompound: true},
}
if sd.isSM {
outer.ContentType = SM2OIDSignedData
}
return asn1.Marshal(outer)
}

View File

@ -126,11 +126,11 @@ func (p7 *PKCS7) decryptSED(sed *signedEnvelopedData, recipient *recipientInfo,
// SignedAndEnvelopedData is an opaque data structure for creating signed and enveloped data payloads
type SignedAndEnvelopedData struct {
sed signedEnvelopedData
certs []*smx509.Certificate
data, cek []byte
digestOid asn1.ObjectIdentifier
isSM bool
sed signedEnvelopedData
certs []*smx509.Certificate
data, cek []byte
contentTypeOid asn1.ObjectIdentifier
digestOid asn1.ObjectIdentifier
}
// NewSignedAndEnvelopedData takes data and cipher and initializes a new PKCS7 SignedAndEnvelopedData structure
@ -160,7 +160,7 @@ func NewSignedAndEnvelopedData(data []byte, cipher pkcs.Cipher) (*SignedAndEnvel
EncryptedContent: marshalEncryptedContent(ciphertext),
},
}
return &SignedAndEnvelopedData{sed: sed, data: data, cek: key, digestOid: OIDDigestAlgorithmSHA1, isSM: false}, nil
return &SignedAndEnvelopedData{sed: sed, data: data, cek: key, digestOid: OIDDigestAlgorithmSHA1, contentTypeOid: OIDSignedEnvelopedData}, nil
}
// NewSMSignedAndEnvelopedData takes data and cipher and initializes a new PKCS7(SM) SignedAndEnvelopedData structure
@ -170,8 +170,8 @@ func NewSMSignedAndEnvelopedData(data []byte, cipher pkcs.Cipher) (*SignedAndEnv
if err != nil {
return nil, err
}
sd.contentTypeOid = SM2OIDSignedEnvelopedData
sd.digestOid = OIDDigestAlgorithmSM3
sd.isSM = true
sd.sed.EncryptedContentInfo.ContentType = SM2OIDData
return sd, nil
}
@ -223,10 +223,11 @@ func (saed *SignedAndEnvelopedData) AddSignerChain(ee *smx509.Certificate, pkey
if !ok {
return errors.New("pkcs7: private key does not implement crypto.Signer")
}
var signOpt crypto.SignerOpts
var tobeSigned []byte
if saed.isSM {
if _, isSM2 := pkey.(sm2.Signer); isSM2 {
signOpt = sm2.DefaultSM2SignerOpts
tobeSigned = saed.data
} else {
@ -261,7 +262,7 @@ func (saed *SignedAndEnvelopedData) AddCertificate(cert *smx509.Certificate) {
// AddRecipient adds a recipient to the payload
func (saed *SignedAndEnvelopedData) AddRecipient(recipient *smx509.Certificate) error {
encryptedKey, err := encryptKey(saed.cek, recipient, false) //TODO: check if CFCA has such function
encryptedKey, err := encryptKey(saed.cek, recipient, false) //TODO: check if CFCA has such function
if err != nil {
return err
}
@ -272,8 +273,6 @@ func (saed *SignedAndEnvelopedData) AddRecipient(recipient *smx509.Certificate)
var keyEncryptionAlgorithm asn1.ObjectIdentifier = OIDEncryptionAlgorithmRSA
if recipient.SignatureAlgorithm == smx509.SM2WithSM3 {
keyEncryptionAlgorithm = OIDKeyEncryptionAlgorithmSM2
} else if saed.isSM {
return errors.New("pkcs7: Shangmi does not support RSA")
}
info := recipientInfo{
Version: 1,
@ -295,11 +294,8 @@ func (saed *SignedAndEnvelopedData) Finish() ([]byte, error) {
return nil, err
}
outer := contentInfo{
ContentType: OIDSignedEnvelopedData,
ContentType: saed.contentTypeOid,
Content: asn1.RawValue{Class: asn1.ClassContextSpecific, Tag: 0, Bytes: inner, IsCompound: true},
}
if saed.isSM {
outer.ContentType = SM2OIDSignedEnvelopedData
}
return asn1.Marshal(outer)
}