internal/sm2ec: ppc64le kick start

This commit is contained in:
Sun Yimin 2024-08-27 13:18:30 +08:00 committed by GitHub
parent 5af95316f0
commit 77c51c2295
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 833 additions and 4 deletions

View File

@ -29,11 +29,12 @@ jobs:
- name: Check out code - name: Check out code
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Build
run: go build -v ./internal/bigmod/...
- name: Test - name: Test
run: go test -v -short ./internal/bigmod/... run: go test -v -short ./internal/bigmod/...
env: env:
GODEBUG: x509sha1=1 GOARCH: ${{ matrix.arch }}
- name: Test
run: go test -v -short ./internal/sm2ec/...
env:
GOARCH: ${{ matrix.arch }} GOARCH: ${{ matrix.arch }}

View File

@ -0,0 +1,702 @@
//go:build !purego
#include "textflag.h"
// This is a port of the s390x asm implementation.
// to ppc64le.
// Some changes were needed due to differences in
// the Go opcodes and/or available instructions
// between s390x and ppc64le.
// 1. There were operand order differences in the
// VSUBUQM, VSUBCUQ, and VSEL instructions.
// 2. ppc64 does not have a multiply high and low
// like s390x, so those were implemented using
// macros to compute the equivalent values.
// 3. The LVX, STVX instructions on ppc64 require
// 16 byte alignment of the data. To avoid that
// requirement, data is loaded using LXVD2X and
// STXVD2X with VPERM to reorder bytes correctly.
// I have identified some areas where I believe
// changes would be needed to make this work for big
// endian; however additional changes beyond what I
// have noted are most likely needed to make it work.
// - The string used with VPERM to swap the byte order
// for loads and stores.
// - The constants that are loaded from CPOOL.
//
// The following constants are defined in an order
// that is correct for use with LXVD2X/STXVD2X
// on little endian.
DATA p256ordK0<>+0x00(SB)/4, $0x72350975
DATA p256ord<>+0x00(SB)/8, $0xfffffffeffffffff
DATA p256ord<>+0x08(SB)/8, $0xffffffffffffffff
DATA p256ord<>+0x10(SB)/8, $0x7203df6b21c6052b
DATA p256ord<>+0x18(SB)/8, $0x53bbf40939d54123
DATA p256<>+0x00(SB)/8, $0xfffffffeffffffff // P256
DATA p256<>+0x08(SB)/8, $0xffffffffffffffff // P256
DATA p256<>+0x10(SB)/8, $0xffffffff00000000 // P256
DATA p256<>+0x18(SB)/8, $0xffffffffffffffff // P256
DATA p256<>+0x20(SB)/8, $0x0000000000000000 // SEL 0 0 d1 d0
DATA p256<>+0x28(SB)/8, $0x18191a1b1c1d1e1f // SEL 0 0 d1 d0
DATA p256mul<>+0x00(SB)/8, $0xffffffff00000000 // P256 original
DATA p256mul<>+0x08(SB)/8, $0xffffffffffffffff // P256
DATA p256mul<>+0x10(SB)/8, $0xfffffffeffffffff // P256 original
DATA p256mul<>+0x18(SB)/8, $0xffffffffffffffff // P256
DATA p256mul<>+0x20(SB)/8, $0x1c1d1e1f00000000 // SEL d0 0 0 d0
DATA p256mul<>+0x28(SB)/8, $0x000000001c1d1e1f // SEL d0 0 0 d0
DATA p256mul<>+0x30(SB)/8, $0x0405060708090a0b // SEL 0 0 d1 d0
DATA p256mul<>+0x38(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL 0 0 d1 d0
DATA p256mul<>+0x40(SB)/8, $0x00000000ffffffff // (1*2^256)%P256
DATA p256mul<>+0x48(SB)/8, $0x0000000000000001 // (1*2^256)%P256
DATA p256mul<>+0x50(SB)/8, $0x0000000100000000 // (1*2^256)%P256
DATA p256mul<>+0x58(SB)/8, $0x0000000000000000 // (1*2^256)%P256
// External declarations for constants
GLOBL p256ordK0<>(SB), 8, $4
GLOBL p256ord<>(SB), 8, $32
GLOBL p256<>(SB), 8, $48
GLOBL p256mul<>(SB), 8, $96
// The following macros are used to implement the ppc64le
// equivalent function from the corresponding s390x
// instruction for vector multiply high, low, and add,
// since there aren't exact equivalent instructions.
// The corresponding s390x instructions appear in the
// comments.
// Implementation for big endian would have to be
// investigated, I think it would be different.
//
//
// Vector multiply word
//
// VMLF x0, x1, out_low
// VMLHF x0, x1, out_hi
#define VMULT(x1, x2, out_low, out_hi) \
VMULEUW x1, x2, TMP1; \
VMULOUW x1, x2, TMP2; \
VMRGEW TMP1, TMP2, out_hi; \
VMRGOW TMP1, TMP2, out_low
//
// Vector multiply add word
//
// VMALF x0, x1, y, out_low
// VMALHF x0, x1, y, out_hi
#define VMULT_ADD(x1, x2, y, one, out_low, out_hi) \
VMULEUW y, one, TMP2; \
VMULOUW y, one, TMP1; \
VMULEUW x1, x2, out_low; \
VMULOUW x1, x2, out_hi; \
VADDUDM TMP2, out_low, TMP2; \
VADDUDM TMP1, out_hi, TMP1; \
VMRGOW TMP2, TMP1, out_low; \
VMRGEW TMP2, TMP1, out_hi
#define res_ptr R3
#define a_ptr R4
#undef res_ptr
#undef a_ptr
#define P1ptr R3
#define CPOOL R7
#define Y1L V0
#define Y1H V1
#define T1L V2
#define T1H V3
#define PL V30
#define PH V31
#define CAR1 V6
// func p256NegCond(val *p256Point, cond int)
TEXT ·p256NegCond(SB), NOSPLIT, $0-16
MOVD val+0(FP), P1ptr
MOVD $16, R16
MOVD cond+8(FP), R6
CMP $0, R6
BC 12, 2, LR // just return if cond == 0
MOVD $p256mul<>+0x00(SB), CPOOL
LXVD2X (P1ptr)(R0), Y1L
LXVD2X (P1ptr)(R16), Y1H
XXPERMDI Y1H, Y1H, $2, Y1H
XXPERMDI Y1L, Y1L, $2, Y1L
LXVD2X (CPOOL)(R0), PL
LXVD2X (CPOOL)(R16), PH
VSUBCUQ PL, Y1L, CAR1 // subtract part2 giving carry
VSUBUQM PL, Y1L, T1L // subtract part2 giving result
VSUBEUQM PH, Y1H, CAR1, T1H // subtract part1 using carry from part2
XXPERMDI T1H, T1H, $2, T1H
XXPERMDI T1L, T1L, $2, T1L
STXVD2X T1L, (R0+P1ptr)
STXVD2X T1H, (R16+P1ptr)
RET
#undef P1ptr
#undef CPOOL
#undef Y1L
#undef Y1H
#undef T1L
#undef T1H
#undef PL
#undef PH
#undef CAR1
#define P3ptr R3
#define P1ptr R4
#define P2ptr R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define SEL V12
#define ZER V13
// This function uses LXVD2X and STXVD2X to avoid the
// data alignment requirement for LVX, STVX. Since
// this code is just moving bytes and not doing arithmetic,
// order of the bytes doesn't matter.
//
// func p256MovCond(res, a, b *p256Point, cond int)
TEXT ·p256MovCond(SB), NOSPLIT, $0-32
MOVD res+0(FP), P3ptr
MOVD a+8(FP), P1ptr
MOVD b+16(FP), P2ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $56, R21
MOVD $64, R19
MOVD $80, R20
// cond is R1 + 24 (cond offset) + 32
LXVDSX (R1)(R21), SEL
VSPLTISB $0, ZER
// SEL controls whether to store a or b
VCMPEQUD SEL, ZER, SEL
LXVD2X (P1ptr+R0), X1H
LXVD2X (P1ptr+R16), X1L
LXVD2X (P1ptr+R17), Y1H
LXVD2X (P1ptr+R18), Y1L
LXVD2X (P1ptr+R19), Z1H
LXVD2X (P1ptr+R20), Z1L
LXVD2X (P2ptr+R0), X2H
LXVD2X (P2ptr+R16), X2L
LXVD2X (P2ptr+R17), Y2H
LXVD2X (P2ptr+R18), Y2L
LXVD2X (P2ptr+R19), Z2H
LXVD2X (P2ptr+R20), Z2L
VSEL X1H, X2H, SEL, X1H
VSEL X1L, X2L, SEL, X1L
VSEL Y1H, Y2H, SEL, Y1H
VSEL Y1L, Y2L, SEL, Y1L
VSEL Z1H, Z2H, SEL, Z1H
VSEL Z1L, Z2L, SEL, Z1L
STXVD2X X1H, (P3ptr+R0)
STXVD2X X1L, (P3ptr+R16)
STXVD2X Y1H, (P3ptr+R17)
STXVD2X Y1L, (P3ptr+R18)
STXVD2X Z1H, (P3ptr+R19)
STXVD2X Z1L, (P3ptr+R20)
RET
#undef P3ptr
#undef P1ptr
#undef P2ptr
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef SEL
#undef ZER
#define P3ptr R3
#define P1ptr R4
#define COUNT R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define ONE V18
#define IDX V19
#define SEL1 V20
#define SEL2 V21
// func p256Select(point *p256Point, table *p256Table, idx int, limit int)
TEXT ·p256Select(SB), NOSPLIT, $0-24
MOVD res+0(FP), P3ptr
MOVD table+8(FP), P1ptr
MOVD limit+24(FP), COUNT
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
LXVDSX (R1)(R18), SEL1 // VLREPG idx+32(FP), SEL1
VSPLTB $7, SEL1, IDX // splat byte
VSPLTISB $1, ONE // VREPIB $1, ONE
VSPLTISB $1, SEL2 // VREPIB $1, SEL2
MOVD COUNT, CTR // set up ctr
VSPLTISB $0, X1H // VZERO X1H
VSPLTISB $0, X1L // VZERO X1L
VSPLTISB $0, Y1H // VZERO Y1H
VSPLTISB $0, Y1L // VZERO Y1L
VSPLTISB $0, Z1H // VZERO Z1H
VSPLTISB $0, Z1L // VZERO Z1L
loop_select:
// LVXD2X is used here since data alignment doesn't
// matter.
LXVD2X (P1ptr+R0), X2H
LXVD2X (P1ptr+R16), X2L
LXVD2X (P1ptr+R17), Y2H
LXVD2X (P1ptr+R18), Y2L
LXVD2X (P1ptr+R19), Z2H
LXVD2X (P1ptr+R20), Z2L
VCMPEQUD SEL2, IDX, SEL1 // VCEQG SEL2, IDX, SEL1 OK
// This will result in SEL1 being all 0s or 1s, meaning
// the result is either X1L or X2L, no individual byte
// selection.
VSEL X1L, X2L, SEL1, X1L
VSEL X1H, X2H, SEL1, X1H
VSEL Y1L, Y2L, SEL1, Y1L
VSEL Y1H, Y2H, SEL1, Y1H
VSEL Z1L, Z2L, SEL1, Z1L
VSEL Z1H, Z2H, SEL1, Z1H
// Add 1 to all bytes in SEL2
VADDUBM SEL2, ONE, SEL2 // VAB SEL2, ONE, SEL2 OK
ADD $96, P1ptr
BDNZ loop_select
// STXVD2X is used here so that alignment doesn't
// need to be verified. Since values were loaded
// using LXVD2X this is OK.
STXVD2X X1H, (P3ptr+R0)
STXVD2X X1L, (P3ptr+R16)
STXVD2X Y1H, (P3ptr+R17)
STXVD2X Y1L, (P3ptr+R18)
STXVD2X Z1H, (P3ptr+R19)
STXVD2X Z1L, (P3ptr+R20)
RET
#undef P3ptr
#undef P1ptr
#undef COUNT
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef ONE
#undef IDX
#undef SEL1
#undef SEL2
// The following functions all reverse the byte order.
//func p256BigToLittle(res *p256Element, in *[32]byte)
TEXT ·p256BigToLittle(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
//func p256LittleToBig(res *[32]byte, in *p256Element)
TEXT ·p256LittleToBig(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
//func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte)
TEXT ·p256OrdBigToLittle(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
//func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement)
TEXT ·p256OrdLittleToBig(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
TEXT p256InternalEndianSwap<>(SB), NOSPLIT, $0-0
// Index registers needed for BR movs
MOVD $8, R9
MOVD $16, R10
MOVD $24, R14
MOVDBR (R0)(R4), R5
MOVDBR (R9)(R4), R6
MOVDBR (R10)(R4), R7
MOVDBR (R14)(R4), R8
MOVD R8, 0(R3)
MOVD R7, 8(R3)
MOVD R6, 16(R3)
MOVD R5, 24(R3)
RET
#define P3ptr R3
#define P1ptr R4
#define COUNT R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define ONE V18
#define IDX V19
#define SEL1 V20
#define SEL2 V21
// func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int)
TEXT ·p256SelectAffine(SB), NOSPLIT, $0-24
MOVD res+0(FP), P3ptr
MOVD table+8(FP), P1ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
LXVDSX (R1)(R18), SEL1
VSPLTB $7, SEL1, IDX // splat byte
VSPLTISB $1, ONE // Vector with byte 1s
VSPLTISB $1, SEL2 // Vector with byte 1s
MOVD $32, COUNT
MOVD COUNT, CTR // loop count
VSPLTISB $0, X1H // VZERO X1H
VSPLTISB $0, X1L // VZERO X1L
VSPLTISB $0, Y1H // VZERO Y1H
VSPLTISB $0, Y1L // VZERO Y1L
loop_select:
LXVD2X (P1ptr+R0), X2H
LXVD2X (P1ptr+R16), X2L
LXVD2X (P1ptr+R17), Y2H
LXVD2X (P1ptr+R18), Y2L
VCMPEQUD SEL2, IDX, SEL1 // Compare against idx
VSEL X1L, X2L, SEL1, X1L // Select if idx matched
VSEL X1H, X2H, SEL1, X1H
VSEL Y1L, Y2L, SEL1, Y1L
VSEL Y1H, Y2H, SEL1, Y1H
VADDUBM SEL2, ONE, SEL2 // Increment SEL2 bytes by 1
ADD $64, P1ptr // Next chunk
BDNZ loop_select
STXVD2X X1H, (P3ptr+R0)
STXVD2X X1L, (P3ptr+R16)
STXVD2X Y1H, (P3ptr+R17)
STXVD2X Y1L, (P3ptr+R18)
RET
#undef P3ptr
#undef P1ptr
#undef COUNT
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef ONE
#undef IDX
#undef SEL1
#undef SEL2
#define res_ptr R3
#define x_ptr R4
#define CPOOL R7
#define T0 V0
#define T1 V1
#define T2 V2
#define TT0 V3
#define TT1 V4
#define ZER V6
#define SEL1 V7
#define SEL2 V8
#define CAR1 V9
#define CAR2 V10
#define RED1 V11
#define RED2 V12
#define PL V13
#define PH V14
// func p256FromMont(res, in *p256Element)
TEXT ·p256FromMont(SB), NOSPLIT, $0-16
MOVD res+0(FP), res_ptr
MOVD in+8(FP), x_ptr
MOVD $16, R16
MOVD $32, R17
MOVD $p256<>+0x00(SB), CPOOL
VSPLTISB $0, T2 // VZERO T2
VSPLTISB $0, ZER // VZERO ZER
// Constants are defined so that the LXVD2X is correct
LXVD2X (CPOOL+R0), PH
LXVD2X (CPOOL+R16), PL
// VPERM byte selections
LXVD2X (CPOOL+R17), SEL1
LXVD2X (R16)(x_ptr), T1
LXVD2X (R0)(x_ptr), T0
// Put in true little endian order
XXPERMDI T0, T0, $2, T0
XXPERMDI T1, T1, $2, T1
// First round
VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0
VSLDOI $4, RED1, ZER, TT0 // 0 d1 d0 0
VSLDOI $4, TT0, ZER, RED2 // d1 d0 0 0
VSUBCUQ RED1, TT0, CAR1 // VSCBIQ TT0, RED1, CAR1
VSUBUQM RED1, TT0, RED1 // VSQ TT0, RED1, RED1
VSUBEUQM RED2, TT0, CAR1, RED2 // VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Second round
VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0
VSLDOI $4, RED1, ZER, TT0 // 0 d1 d0 0
VSLDOI $4, TT0, ZER, RED2 // d1 d0 0 0
VSUBCUQ RED1, TT0, CAR1 // VSCBIQ TT0, RED1, CAR1
VSUBUQM RED1, TT0, RED1 // VSQ TT0, RED1, RED1
VSUBEUQM RED2, TT0, CAR1, RED2 // VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Third round
VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0
VSLDOI $4, RED1, ZER, TT0 // 0 d1 d0 0
VSLDOI $4, TT0, ZER, RED2 // d1 d0 0 0
VSUBCUQ RED1, TT0, CAR1 // VSCBIQ TT0, RED1, CAR1
VSUBUQM RED1, TT0, RED1 // VSQ TT0, RED1, RED1
VSUBEUQM RED2, TT0, CAR1, RED2 // VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Last round
VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0
VSLDOI $4, RED1, ZER, TT0 // 0 d1 d0 0
VSLDOI $4, TT0, ZER, RED2 // d1 d0 0 0
VSUBCUQ RED1, TT0, CAR1 // VSCBIQ TT0, RED1, CAR1
VSUBUQM RED1, TT0, RED1 // VSQ TT0, RED1, RED1
VSUBEUQM RED2, TT0, CAR1, RED2 // VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// ---------------------------------------------------
VSUBCUQ T0, PL, CAR1 // VSCBIQ PL, T0, CAR1
VSUBUQM T0, PL, TT0 // VSQ PL, T0, TT0
VSUBECUQ T1, PH, CAR1, CAR2 // VSBCBIQ T1, PH, CAR1, CAR2
VSUBEUQM T1, PH, CAR1, TT1 // VSBIQ T1, PH, CAR1, TT1
VSUBEUQM T2, ZER, CAR2, T2 // VSBIQ T2, ZER, CAR2, T2
VSEL TT0, T0, T2, T0
VSEL TT1, T1, T2, T1
// Reorder the bytes so STXVD2X can be used.
// TT0, TT1 used for VPERM result in case
// the caller expects T0, T1 to be good.
XXPERMDI T0, T0, $2, TT0
XXPERMDI T1, T1, $2, TT1
STXVD2X TT0, (R0)(res_ptr)
STXVD2X TT1, (R16)(res_ptr)
RET
#undef res_ptr
#undef x_ptr
#undef CPOOL
#undef T0
#undef T1
#undef T2
#undef TT0
#undef TT1
#undef ZER
#undef SEL1
#undef SEL2
#undef CAR1
#undef CAR2
#undef RED1
#undef RED2
#undef PL
#undef PH
//func p256OrdReduce(s *p256OrdElement)
#define res_ptr R1
#define CPOOL R4
#define T0 V0
#define T1 V1
#define T2 V2
#define TT0 V3
#define TT1 V4
#define ZER V6
#define CAR1 V7
#define CAR2 V8
#define PL V9
#define PH V10
TEXT ·p256OrdReduce(SB),NOSPLIT,$0
MOVD res+0(FP), res_ptr
MOVD $16, R16
VSPLTISB $0, T2 // VZERO T2
VSPLTISB $0, ZER // VZERO ZER
MOVD $p256ord<>+0x00(SB), CPOOL
LXVD2X (CPOOL+R0), PH
LXVD2X (CPOOL+R16), PL
LXVD2X (R16)(res_ptr), T1
LXVD2X (R0)(res_ptr), T0
// Put in true little endian order
XXPERMDI T0, T0, $2, T0
XXPERMDI T1, T1, $2, T1
VSUBCUQ T0, PL, CAR1 // VSCBIQ PL, T0, CAR1
VSUBUQM T0, PL, TT0 // VSQ PL, T0, TT0
VSUBECUQ T1, PH, CAR1, CAR2 // VSBCBIQ T1, PH, CAR1, CAR2
VSUBEUQM T1, PH, CAR1, TT1 // VSBIQ T1, PH, CAR1, TT1
VSUBEUQM T2, ZER, CAR2, T2 // VSBIQ T2, ZER, CAR2, T2
VSEL TT0, T0, T2, T0
VSEL TT1, T1, T2, T1
// Reorder the bytes so STXVD2X can be used.
// TT0, TT1 used for VPERM result in case
// the caller expects T0, T1 to be good.
XXPERMDI T0, T0, $2, TT0
XXPERMDI T1, T1, $2, TT1
STXVD2X TT0, (R0)(res_ptr)
STXVD2X TT1, (R16)(res_ptr)
RET
#undef res_ptr
#undef CPOOL
#undef T0
#undef T1
#undef T2
#undef TT0
#undef TT1
#undef ZER
#undef CAR1
#undef CAR2
#undef PL
#undef PH

View File

@ -0,0 +1,44 @@
//go:build !purego
package sm2ec
// p256Element is a P-256 base field element in [0, P-1] in the Montgomery
// domain (with R 2²⁵⁶) as four limbs in little-endian order value.
type p256Element [4]uint64
// p256OrdElement is a P-256 scalar field element in [0, ord(G)-1] in the
// Montgomery domain (with R 2²⁵⁶) as four uint64 limbs in little-endian order.
type p256OrdElement [4]uint64
// Montgomery multiplication by R⁻¹, or 1 outside the domain.
// Sets res = in * R⁻¹, bringing res out of the Montgomery domain.
//
//go:noescape
func p256FromMont(res, in *p256Element)
// If cond is not 0, sets val = -val mod p.
//
//go:noescape
func p256NegCond(val *p256Element, cond int)
// If cond is 0, sets res = b, otherwise sets res = a.
//
//go:noescape
func p256MovCond(res, a, b *SM2P256Point, cond int)
//go:noescape
func p256BigToLittle(res *p256Element, in *[32]byte)
//go:noescape
func p256LittleToBig(res *[32]byte, in *p256Element)
//go:noescape
func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte)
//go:noescape
func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement)
// p256OrdReduce ensures s is in the range [0, ord(G)-1].
//
//go:noescape
func p256OrdReduce(s *p256OrdElement)

View File

@ -0,0 +1,82 @@
//go:build ppc64le && !purego
package sm2ec
import (
"math/big"
"testing"
)
var bigOne = big.NewInt(1)
// fromBig converts a *big.Int into a format used by this code.
func fromBig(out *[4]uint64, big *big.Int) {
for i := range out {
out[i] = 0
}
for i, v := range big.Bits() {
out[i] = uint64(v)
}
}
func montFromBig(out *[4]uint64, n *big.Int) {
p, _ := new(big.Int).SetString("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF", 16)
r := new(big.Int).Lsh(bigOne, 256)
// out = big * R mod P
outBig := new(big.Int).Mul(n, r)
outBig.Mod(outBig, p)
fromBig(out, outBig)
}
func toBigInt(in *p256Element) *big.Int {
var valBytes [32]byte
p256LittleToBig(&valBytes, in)
return new(big.Int).SetBytes(valBytes[:])
}
func ordElmToBigInt(in *p256OrdElement) *big.Int {
var valBytes [32]byte
p256OrdLittleToBig(&valBytes, in)
return new(big.Int).SetBytes(valBytes[:])
}
func testP256FromMont(v *big.Int, t *testing.T) {
val := new(p256Element)
montFromBig((*[4]uint64)(val), v)
res := new(p256Element)
p256FromMont(res, val)
if toBigInt(res).Cmp(v) != 0 {
t.Fatalf("p256FromMont failed for %v", v)
}
}
func TestP256FromMont(t *testing.T) {
p, _ := new(big.Int).SetString("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF", 16)
for i := 0; i < 20; i++ {
bigVal := big.NewInt(int64(i))
testP256FromMont(bigVal, t)
bigVal = new(big.Int).Sub(p, big.NewInt(int64(i)))
testP256FromMont(bigVal, t)
}
}
func testP256OrderReduce(v *big.Int, t *testing.T) {
val := new(p256OrdElement)
montFromBig((*[4]uint64)(val), v)
p256OrdReduce(val)
if ordElmToBigInt(val).Cmp(v) != 0 {
t.Fatalf("p256OrdReduce failed for %v", v)
}
}
func TestP256OrderReduce(t *testing.T) {
p, _ := new(big.Int).SetString("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123", 16)
for i := 0; i < 20; i++ {
bigVal := big.NewInt(int64(i))
testP256OrderReduce(bigVal, t)
bigVal = new(big.Int).Sub(p, big.NewInt(int64(i)))
testP256OrderReduce(bigVal, t)
}
}