internal/bigmod: sync sdk #200

This commit is contained in:
Sun Yimin 2024-01-12 17:43:51 +08:00 committed by GitHub
parent 25ead7dc1f
commit 5cf5e347bc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 60 additions and 24 deletions

View File

@ -318,14 +318,48 @@ type Modulus struct {
// rr returns R*R with R = 2^(_W * n) and n = len(m.nat.limbs).
func rr(m *Modulus) *Nat {
rr := NewNat().ExpandFor(m)
// R*R is 2^(2 * _W * n). We can safely get 2^(_W * (n - 1)) by setting the
// most significant limb to 1. We then get to R*R by shifting left by _W
// n + 1 times.
n := len(rr.limbs)
rr.limbs[n-1] = 1
for i := n - 1; i < 2*n; i++ {
rr.shiftIn(0, m) // x = x * 2^_W mod m
n := uint(len(rr.limbs))
mLen := uint(m.BitLen())
logR := _W * n
// We start by computing R = 2^(_W * n) mod m. We can get pretty close, to
// 2^⌊log₂m⌋, by setting the highest bit we can without having to reduce.
rr.limbs[n-1] = 1 << ((mLen - 1) % _W)
// Then we double until we reach 2^(_W * n).
for i := mLen - 1; i < logR; i++ {
rr.Add(rr, m)
}
// Next we need to get from R to 2^(_W * n) R mod m (aka from one to R in
// the Montgomery domain, meaning we can use Montgomery multiplication now).
// We could do that by doubling _W * n times, or with a square-and-double
// chain log2(_W * n) long. Turns out the fastest thing is to start out with
// doublings, and switch to square-and-double once the exponent is large
// enough to justify the cost of the multiplications.
// The threshold is selected experimentally as a linear function of n.
threshold := n / 4
// We calculate how many of the most-significant bits of the exponent we can
// compute before crossing the threshold, and we do it with doublings.
i := bits.UintSize
for logR>>i <= threshold {
i--
}
for k := uint(0); k < logR>>i; k++ {
rr.Add(rr, m)
}
// Then we process the remaining bits of the exponent with a
// square-and-double chain.
for i > 0 {
rr.montgomeryMul(rr, rr, m)
i--
if logR>>i&1 != 0 {
rr.Add(rr, m)
}
}
return rr
}
@ -775,26 +809,21 @@ func (out *Nat) Exp(x *Nat, e []byte, m *Modulus) *Nat {
return out.montgomeryReduction(m)
}
// ExpShort calculates out = x^e mod m.
// ExpShortVarTime calculates out = x^e mod m.
//
// The output will be resized to the size of m and overwritten. x must already
// be reduced modulo m. This leaks the exact bit size of the exponent.
func (out *Nat) ExpShort(x *Nat, e uint, m *Modulus) *Nat {
xR := NewNat().Set(x).montgomeryRepresentation(m)
out.resetFor(m)
out.limbs[0] = 1
out.montgomeryRepresentation(m)
// be reduced modulo m. This leaks the exponent through timing side-channels.
func (out *Nat) ExpShortVarTime(x *Nat, e uint, m *Modulus) *Nat {
// For short exponents, precomputing a table and using a window like in Exp
// doesn't pay off. Instead, we do a simple constant-time conditional
// square-and-multiply chain, skipping the initial run of zeroes.
tmp := NewNat().ExpandFor(m)
for i := bits.UintSize - bitLen(e); i < bits.UintSize; i++ {
// doesn't pay off. Instead, we do a simple conditional square-and-multiply
// chain, skipping the initial run of zeroes.
xR := NewNat().Set(x).montgomeryRepresentation(m)
out.Set(xR)
for i := bits.UintSize - bitLen(e) + 1; i < bits.UintSize; i++ {
out.montgomeryMul(out, out, m)
k := (e >> (bits.UintSize - i - 1)) & 1
tmp.montgomeryMul(out, xR, m)
out.assign(ctEq(k, 1), tmp)
if k := (e >> (bits.UintSize - i - 1)) & 1; k != 0 {
out.montgomeryMul(out, xR, m)
}
}
return out.montgomeryReduction(m)
}

View File

@ -303,7 +303,7 @@ func TestExpShort(t *testing.T) {
m := modulusFromBytes([]byte{13})
x := &Nat{[]uint{3}}
out := &Nat{[]uint{0}}
out.ExpShort(x, 12, m)
out.ExpShortVarTime(x, 12, m)
expected := &Nat{[]uint{1}}
if out.Equal(expected) != 1 {
t.Errorf("%+v != %+v", out, expected)
@ -383,6 +383,13 @@ func makeBenchmarkExponent() []byte {
return e
}
func BenchmarkRR256(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
makeBenchmarkModulus(4)
}
}
func BenchmarkModAdd(b *testing.B) {
x := makeBenchmarkValue(32)
y := makeBenchmarkValue(32)