zuc: refactoring

This commit is contained in:
Sun Yimin 2024-11-11 17:53:57 +08:00 committed by GitHub
parent 1f209d2317
commit 58ad15fde8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 749 additions and 937 deletions

View File

@ -18,7 +18,7 @@ func block256(m *ZUC256Mac, p []byte) {
case 16:
eia256RoundTag16(&m.t[0], &m.k0[0], &p[0])
default:
eia3Round16B(&m.t[0], &m.k0[0], &p[0], m.tagSize)
eiaRoundTag4(&m.t[0], &m.k0[0], &p[0])
}
p = p[chunk:]
}

View File

@ -1,448 +0,0 @@
// Referenced Intel(R) Multi-Buffer Crypto for IPsec
// https://github.com/intel/intel-ipsec-mb/
//go:build !purego
#include "textflag.h"
DATA bit_reverse_table_l<>+0x00(SB)/8, $0x0e060a020c040800
DATA bit_reverse_table_l<>+0x08(SB)/8, $0x0f070b030d050901
GLOBL bit_reverse_table_l<>(SB), RODATA, $16
DATA bit_reverse_table_h<>+0x00(SB)/8, $0xe060a020c0408000
DATA bit_reverse_table_h<>+0x08(SB)/8, $0xf070b030d0509010
GLOBL bit_reverse_table_h<>(SB), RODATA, $16
DATA bit_reverse_and_table<>+0x00(SB)/8, $0x0f0f0f0f0f0f0f0f
DATA bit_reverse_and_table<>+0x08(SB)/8, $0x0f0f0f0f0f0f0f0f
GLOBL bit_reverse_and_table<>(SB), RODATA, $16
DATA shuf_mask_dw0_0_dw1_0<>+0x00(SB)/8, $0xffffffff03020100
DATA shuf_mask_dw0_0_dw1_0<>+0x08(SB)/8, $0xffffffff07060504
GLOBL shuf_mask_dw0_0_dw1_0<>(SB), RODATA, $16
DATA shuf_mask_0_0_dw1_0<>+0x00(SB)/8, $0xffffffffffffffff
DATA shuf_mask_0_0_dw1_0<>+0x08(SB)/8, $0xffffffff07060504
GLOBL shuf_mask_0_0_dw1_0<>(SB), RODATA, $16
DATA shuf_mask_0_0_0_dw1<>+0x00(SB)/8, $0xffffffffffffffff
DATA shuf_mask_0_0_0_dw1<>+0x08(SB)/8, $0x07060504ffffffff
GLOBL shuf_mask_0_0_0_dw1<>(SB), RODATA, $16
DATA shuf_mask_dw2_0_dw3_0<>+0x00(SB)/8, $0xffffffff0b0a0908
DATA shuf_mask_dw2_0_dw3_0<>+0x08(SB)/8, $0xffffffff0f0e0d0c
GLOBL shuf_mask_dw2_0_dw3_0<>(SB), RODATA, $16
DATA bits_32_63<>+0x00(SB)/8, $0xffffffff00000000
DATA bits_32_63<>+0x08(SB)/8, $0x0000000000000000
GLOBL bits_32_63<>(SB), RODATA, $16
#define XTMP1 X1
#define XTMP2 X2
#define XTMP3 X3
#define XTMP4 X4
#define XTMP5 X5
#define XTMP6 X6
#define XDATA X7
#define XDIGEST X8
#define KS_L X9
#define KS_M1 X10
#define KS_M2 X11
#define KS_H X12
// func eia256RoundTag8(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag8(SB),NOSPLIT,$0
MOVQ t+0(FP), AX
MOVQ ks+8(FP), BX
MOVQ p+16(FP), CX
CMPB ·useAVX(SB), $1
JE avx
// Reverse data bytes
MOVUPS (0)(CX), XDATA
MOVOU bit_reverse_and_table<>(SB), XTMP4
MOVOU XDATA, XTMP2
PAND XTMP4, XTMP2
PANDN XDATA, XTMP4
PSRLQ $4, XTMP4
MOVOU bit_reverse_table_h<>(SB), XTMP3
PSHUFB XTMP2, XTMP3
MOVOU bit_reverse_table_l<>(SB), XTMP1
PSHUFB XTMP4, XTMP1
PXOR XTMP1, XTMP3 // XTMP3 - bit reverse data bytes
// ZUC authentication part, 4x32 data bits
// setup KS
MOVUPS (0*4)(BX), XTMP1
MOVUPS (2*4)(BX), XTMP2
MOVUPS (4*4)(BX), XTMP4
PSHUFD $0x61, XTMP1, KS_L // KS bits [63:32 31:0 95:64 63:32]
PSHUFD $0x61, XTMP2, KS_M1 // KS bits [127:96 95:64 159:128 127:96]
PSHUFD $0x61, XTMP4, KS_M2 // KS bits [191:160 159:128 223:192 191:160]
// setup DATA
MOVOU XTMP3, XTMP1
PSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XTMP1
MOVOU XTMP1, XTMP2 // XTMP1/2 - Data bits [31:0 0s 63:32 0s]
PSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XTMP3
MOVOU XTMP3, XDIGEST // XDIGEST/XTMP3 - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
// Save data for following products
MOVOU XTMP2, XTMP5 // Data bits [31:0 0s 63:32 0s]
MOVOU XTMP3, XTMP6 // Data bits [95:64 0s 127:96 0s]
// Calculate lower 32 bits of tag
PCLMULQDQ $0x00, KS_L, XTMP1
PCLMULQDQ $0x11, KS_L, XTMP2
PCLMULQDQ $0x00, KS_M1, XDIGEST
PCLMULQDQ $0x11, KS_M1, XTMP3
// XOR all products and move bits 63-32 bits to lower 32 bits
PXOR XTMP1, XTMP2
PXOR XTMP3, XDIGEST
PXOR XTMP2, XDIGEST
MOVQ XDIGEST, XDIGEST // Clear top 64 bits
PSRLDQ $4, XDIGEST
// Prepare data and calculate bits 63-32 of tag
MOVOU XTMP5, XTMP1
MOVOU XTMP5, XTMP2
MOVOU XTMP6, XTMP3
MOVOU XTMP6, XTMP4
PCLMULQDQ $0x10, KS_L, XTMP1
PCLMULQDQ $0x01, KS_M1, XTMP2
PCLMULQDQ $0x10, KS_M1, XTMP3
PCLMULQDQ $0x01, KS_M2, XTMP4
// XOR all the products and keep only bits 63-32
PXOR XTMP2, XTMP1
PXOR XTMP4, XTMP3
PXOR XTMP3, XTMP1
PAND bits_32_63<>(SB), XTMP1
// OR with lower 32 bits, to construct 64 bits of tag
POR XTMP1, XDIGEST
// Update tag
MOVQ XDIGEST, R10
XORQ R10, (AX)
// Copy last 16 bytes of KS to the front
MOVUPS (4*4)(BX), XTMP1
MOVUPS XTMP1, (0*4)(BX)
RET
avx:
VMOVDQU (0)(CX), XDATA
// Reverse data bytes
VMOVDQU bit_reverse_and_table<>(SB), XTMP1
VPAND XTMP1, XDATA, XTMP2
VPANDN XDATA, XTMP1, XTMP3
VPSRLD $4, XTMP3, XTMP3
VMOVDQU bit_reverse_table_h<>(SB), XTMP1
VPSHUFB XTMP2, XTMP1, XTMP4
VMOVDQU bit_reverse_table_l<>(SB), XTMP1
VPSHUFB XTMP3, XTMP1, XTMP1
VPOR XTMP1, XTMP4, XTMP4
// ZUC authentication part, 4x32 data bits
// setup KS
VPSHUFD $0x61, (0*4)(BX), KS_L // KS bits [63:32 31:0 95:64 63:32]
VPSHUFD $0x61, (2*4)(BX), KS_M1 // KS bits [63:32 31:0 95:64 63:32]
VPSHUFD $0x61, (4*4)(BX), KS_M2 // KS bits [191:160 159:128 223:192 191:160]
// setup DATA
// Data bytes [31:0 0s 63:32 0s]
VPSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XTMP4, XTMP1
// Data bytes [95:64 0s 127:96 0s]
VPSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XTMP4, XTMP2
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPCLMULQDQ $0x00, KS_L, XTMP1, XTMP3
VPCLMULQDQ $0x11, KS_L, XTMP1, XTMP4
VPCLMULQDQ $0x00, KS_M1, XTMP2, XTMP5
VPCLMULQDQ $0x11, KS_M1, XTMP2, XTMP6
VPXOR XTMP3, XTMP4, XTMP3
VPXOR XTMP5, XTMP6, XTMP5
VPXOR XTMP3, XTMP5, XTMP3
// Move previous result to low 32 bits and XOR with previous digest
VMOVQ XTMP3, XTMP3 // Clear top 64 bits
VPSRLDQ $4, XTMP3, XDIGEST
VPCLMULQDQ $0x10, KS_L, XTMP1, XTMP3
VPCLMULQDQ $0x01, KS_M1, XTMP1, XTMP4
VPCLMULQDQ $0x10, KS_M1, XTMP2, XTMP5
VPCLMULQDQ $0x01, KS_M2, XTMP2, XTMP6
// XOR all the products and keep only 32-63 bits
VPXOR XTMP4, XTMP3, XTMP3
VPXOR XTMP6, XTMP5, XTMP5
VPXOR XTMP5, XTMP3, XTMP3
VPAND bits_32_63<>(SB), XTMP3, XTMP3
// XOR with bits 32-63 of previous digest
VPXOR XTMP3, XDIGEST, XDIGEST
// Update tag
VMOVQ XDIGEST, R10
XORQ R10, (AX)
// Copy last 16 bytes of KS to the front
VMOVDQU (4*4)(BX), XTMP1
VMOVDQU XTMP1, (0*4)(BX)
VZEROUPPER
RET
// func eia256RoundTag16(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag16(SB),NOSPLIT,$0
MOVQ t+0(FP), AX
MOVQ ks+8(FP), BX
MOVQ p+16(FP), CX
CMPB ·useAVX(SB), $1
JE avx
// Reverse data bytes
MOVUPS (0)(CX), XDATA
MOVOU bit_reverse_and_table<>(SB), XTMP4
MOVOU XDATA, XTMP2
PAND XTMP4, XTMP2
PANDN XDATA, XTMP4
PSRLQ $4, XTMP4
MOVOU bit_reverse_table_h<>(SB), XTMP3
PSHUFB XTMP2, XTMP3
MOVOU bit_reverse_table_l<>(SB), XTMP1
PSHUFB XTMP4, XTMP1
PXOR XTMP1, XTMP3 // XTMP3 - bit reverse data bytes
// ZUC authentication part, 4x32 data bits
// setup KS
MOVUPS (0*4)(BX), XTMP1
MOVUPS (2*4)(BX), XTMP2
MOVUPS (4*4)(BX), XTMP4
PSHUFD $0x61, XTMP1, KS_L // KS bits [63:32 31:0 95:64 63:32]
PSHUFD $0x61, XTMP2, KS_M1 // KS bits [127:96 95:64 159:128 127:96]
PSHUFD $0x61, XTMP4, KS_M2 // KS bits [191:160 159:128 223:192 191:160]
PSHUFD $0xBB, XTMP4, KS_H // KS bits [255:224 223:192 255:224 223:192]
// setup DATA
MOVOU XTMP3, XTMP1
PSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XTMP1
MOVOU XTMP1, XTMP2 // XTMP1/2 - Data bits [31:0 0s 63:32 0s]
PSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XTMP3
MOVOU XTMP3, XDIGEST // XDIGEST/XTMP3 - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
// Save data for following products
MOVOU XTMP2, XTMP5 // Data bits [31:0 0s 63:32 0s]
MOVOU XTMP3, XTMP6 // Data bits [95:64 0s 127:96 0s]
// Calculate lower 32 bits of tag
PCLMULQDQ $0x00, KS_L, XTMP1
PCLMULQDQ $0x11, KS_L, XTMP2
PCLMULQDQ $0x00, KS_M1, XDIGEST
PCLMULQDQ $0x11, KS_M1, XTMP3
// XOR all products and move bits 63-32 bits to lower 32 bits
PXOR XTMP1, XTMP2
PXOR XTMP3, XDIGEST
PXOR XTMP2, XDIGEST
MOVQ XDIGEST, XDIGEST // Clear top 64 bits
PSRLDQ $4, XDIGEST
// Prepare data and calculate bits 63-32 of tag
MOVOU XTMP5, XTMP1
MOVOU XTMP5, XTMP2
MOVOU XTMP6, XTMP3
MOVOU XTMP6, XTMP4
PCLMULQDQ $0x10, KS_L, XTMP1
PCLMULQDQ $0x01, KS_M1, XTMP2
PCLMULQDQ $0x10, KS_M1, XTMP3
PCLMULQDQ $0x01, KS_M2, XTMP4
// XOR all the products and keep only bits 63-32
PXOR XTMP2, XTMP1
PXOR XTMP4, XTMP3
PXOR XTMP3, XTMP1
PAND bits_32_63<>(SB), XTMP1
// OR with lower 32 bits, to construct 64 bits of tag
POR XTMP1, XDIGEST
// Prepare data and calculate bits 95-64 of tag
MOVOU XTMP5, XTMP1
MOVOU XTMP5, XTMP2
MOVOU XTMP6, XTMP3
MOVOU XTMP6, XTMP4
PCLMULQDQ $0x00, KS_M1, XTMP1
PCLMULQDQ $0x11, KS_M1, XTMP2
PCLMULQDQ $0x00, KS_M2, XTMP3
PCLMULQDQ $0x11, KS_M2, XTMP4
// XOR all the products and move bits 63-32 to bits 95-64
PXOR XTMP2, XTMP1
PXOR XTMP4, XTMP3
PXOR XTMP3, XTMP1
PSHUFB shuf_mask_0_0_dw1_0<>(SB), XTMP1
// OR with lower 64 bits, to construct 96 bits of tag
POR XTMP1, XDIGEST
// Prepare data and calculate bits 127-96 of tag
MOVOU XTMP5, XTMP1
MOVOU XTMP5, XTMP2
MOVOU XTMP6, XTMP3
MOVOU XTMP6, XTMP4
PCLMULQDQ $0x10, KS_M1, XTMP1
PCLMULQDQ $0x01, KS_M2, XTMP2
PCLMULQDQ $0x10, KS_M2, XTMP3
PCLMULQDQ $0x01, KS_H, XTMP4
// XOR all the products and move bits 63-32 to bits 127-96
PXOR XTMP2, XTMP1
PXOR XTMP4, XTMP3
PXOR XTMP3, XTMP1
PSHUFB shuf_mask_0_0_0_dw1<>(SB), XTMP1
// OR with lower 96 bits, to construct 128 bits of tag
POR XTMP1, XDIGEST
// Update tag
MOVUPS (AX), XTMP1
PXOR XTMP1, XDIGEST
MOVUPS XDIGEST, (AX)
// Copy last 16 bytes of KS to the front
MOVUPS (4*4)(BX), XTMP1
MOVUPS XTMP1, (0*4)(BX)
RET
avx:
VMOVDQU (0)(CX), XDATA
// Reverse data bytes
VMOVDQU bit_reverse_and_table<>(SB), XTMP1
VPAND XTMP1, XDATA, XTMP2
VPANDN XDATA, XTMP1, XTMP3
VPSRLD $4, XTMP3, XTMP3
VMOVDQU bit_reverse_table_h<>(SB), XTMP1
VPSHUFB XTMP2, XTMP1, XTMP4
VMOVDQU bit_reverse_table_l<>(SB), XTMP1
VPSHUFB XTMP3, XTMP1, XTMP1
VPOR XTMP1, XTMP4, XTMP4
// ZUC authentication part, 4x32 data bits
// setup KS
VPSHUFD $0x61, (0*4)(BX), KS_L // KS bits [63:32 31:0 95:64 63:32]
VPSHUFD $0x61, (2*4)(BX), KS_M1 // KS bits [63:32 31:0 95:64 63:32]
VPSHUFD $0x61, (4*4)(BX), KS_M2 // KS bits [191:160 159:128 223:192 191:160]
VPSHUFD $0xBB, (4*4)(BX), KS_H // KS bits [255:224 223:192 255:224 223:192]
// setup DATA
// Data bytes [31:0 0s 63:32 0s]
VPSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XTMP4, XTMP1
// Data bytes [95:64 0s 127:96 0s]
VPSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XTMP4, XTMP2
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPCLMULQDQ $0x00, KS_L, XTMP1, XTMP3
VPCLMULQDQ $0x11, KS_L, XTMP1, XTMP4
VPCLMULQDQ $0x00, KS_M1, XTMP2, XTMP5
VPCLMULQDQ $0x11, KS_M1, XTMP2, XTMP6
VPXOR XTMP3, XTMP4, XTMP3
VPXOR XTMP5, XTMP6, XTMP5
VPXOR XTMP3, XTMP5, XTMP3
// Move previous result to low 32 bits and XOR with previous digest
VMOVQ XTMP3, XTMP3 // Clear top 64 bits
VPSRLDQ $4, XTMP3, XDIGEST
VPCLMULQDQ $0x10, KS_L, XTMP1, XTMP3
VPCLMULQDQ $0x01, KS_M1, XTMP1, XTMP4
VPCLMULQDQ $0x10, KS_M1, XTMP2, XTMP5
VPCLMULQDQ $0x01, KS_M2, XTMP2, XTMP6
// XOR all the products and keep only 32-63 bits
VPXOR XTMP4, XTMP3, XTMP3
VPXOR XTMP6, XTMP5, XTMP5
VPXOR XTMP5, XTMP3, XTMP3
VPAND bits_32_63<>(SB), XTMP3, XTMP3
// XOR with bits 32-63 of previous digest
VPXOR XTMP3, XDIGEST, XDIGEST
// Prepare data and calculate bits 95-64 of tag
VPCLMULQDQ $0x00, KS_M1, XTMP1, XTMP3
VPCLMULQDQ $0x11, KS_M1, XTMP1, XTMP4
VPCLMULQDQ $0x00, KS_M2, XTMP2, XTMP5
VPCLMULQDQ $0x11, KS_M2, XTMP2, XTMP6
// XOR all the products and move bits 63-32 to bits 95-64
VPXOR XTMP4, XTMP3, XTMP3
VPXOR XTMP6, XTMP5, XTMP5
VPXOR XTMP5, XTMP3, XTMP3
VPSHUFB shuf_mask_0_0_dw1_0<>(SB), XTMP3, XTMP3
// XOR with previous bits 64-95 of previous digest
VPXOR XTMP3, XDIGEST, XDIGEST
// Prepare data and calculate bits 127-96 of tag
VPCLMULQDQ $0x10, KS_M1, XTMP1, XTMP3
VPCLMULQDQ $0x01, KS_M2, XTMP1, XTMP4
VPCLMULQDQ $0x10, KS_M2, XTMP2, XTMP5
VPCLMULQDQ $0x01, KS_H, XTMP2, XTMP6
// XOR all the products and move bits 63-32 to bits 127-96
VPXOR XTMP4, XTMP3, XTMP3
VPXOR XTMP6, XTMP5, XTMP5
VPXOR XTMP5, XTMP3, XTMP3
VPSHUFB shuf_mask_0_0_0_dw1<>(SB), XTMP3, XTMP3
// XOR with previous bits 64-95 of previous digest
VPXOR XTMP3, XDIGEST, XDIGEST
// Update tag
VPXOR (AX), XDIGEST, XDIGEST
VMOVDQA XDIGEST, (AX)
// Copy last 16 bytes of KS to the front
VMOVDQU (4*4)(BX), XTMP1
VMOVDQU XTMP1, (0*4)(BX)
VZEROUPPER
RET

View File

@ -1,208 +0,0 @@
//go:build !purego
#include "textflag.h"
#define AX R2
#define BX R3
#define CX R4
#define DX R5
#define XTMP1 V1
#define XTMP2 V2
#define XTMP3 V3
#define XTMP4 V4
#define XTMP5 V5
#define XTMP6 V6
#define XDATA V7
#define XDIGEST V8
#define KS_L V9
#define KS_M1 V10
#define KS_M2 V11
#define KS_H V12
#define BIT_REV_AND_TAB V20
#define BIT_REV_TAB_L V21
#define BIT_REV_TAB_H V22
#define SHUF_MASK_DW0_DW1 V23
#define SHUF_MASK_DW2_DW3 V24
#define LOAD_GLOBAL_DATA() \
MOVD $·eia_const(SB), R0 \
VLD1 (R0), [BIT_REV_TAB_L.B16, BIT_REV_TAB_H.B16, SHUF_MASK_DW0_DW1.B16, SHUF_MASK_DW2_DW3.B16] \
MOVW $0x0F0F0F0F, R0 \
VDUP R0, BIT_REV_AND_TAB.S4
// func eia256RoundTag8(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag8(SB),NOSPLIT,$0
MOVD t+0(FP), AX
MOVD ks+8(FP), BX
MOVD p+16(FP), CX
LOAD_GLOBAL_DATA()
// Reverse data bytes
VLD1 (CX), [XDATA.B16]
VAND BIT_REV_AND_TAB.B16, XDATA.B16, XTMP3.B16
VUSHR $4, XDATA.B16, XTMP1.B16
VTBL XTMP3.B16, [BIT_REV_TAB_H.B16], XTMP3.B16
VTBL XTMP1.B16, [BIT_REV_TAB_L.B16], XTMP1.B16
VEOR XTMP1.B16, XTMP3.B16, XTMP3.B16 // XTMP3 - bit reverse data bytes
// ZUC authentication part, 4x32 data bits
// setup KS
VLD1 (BX), [XTMP1.B16, XTMP2.B16]
VST1 [XTMP2.B16], (BX) // Copy last 16 bytes of KS to the front
// TODO: Any better solution???
VMOVQ $0x0302010007060504, $0x070605040b0a0908, XTMP4
VTBL XTMP4.B16, [XTMP1.B16], KS_L.B16 // KS bits [63:32 31:0 95:64 63:32]
VTBL XTMP4.B16, [XTMP2.B16], KS_M2.B16 // KS bits [191:160 159:128 223:192 191:160]
VDUP XTMP1.S[3], KS_M1.S4
VMOV XTMP1.S[2], KS_M1.S[1]
VMOV XTMP2.S[0], KS_M1.S[2] // KS bits [127:96 95:64 159:128 127:96]
// setup DATA
VTBL SHUF_MASK_DW0_DW1.B16, [XTMP3.B16], XTMP1.B16 // XTMP1 - Data bits [31:0 0s 63:32 0s]
VTBL SHUF_MASK_DW2_DW3.B16, [XTMP3.B16], XTMP2.B16 // XTMP2 - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPMULL KS_L.D1, XTMP1.D1, XTMP3.Q1
VPMULL2 KS_L.D2, XTMP1.D2, XTMP4.Q1
VPMULL KS_M1.D1, XTMP2.D1, XTMP5.Q1
VPMULL2 KS_M1.D2, XTMP2.D2, XTMP6.Q1
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
// Move previous result to low 32 bits and XOR with previous digest
VMOV XTMP3.S[1], XDIGEST.S[0]
// Prepare data and calculate bits 63-32 of tag
VEXT $8, KS_L.B16, KS_L.B16, XTMP5.B16
VPMULL XTMP5.D1, XTMP1.D1, XTMP3.Q1
VEXT $8, XTMP1.B16, XTMP1.B16, XTMP5.B16
VPMULL KS_M1.D1, XTMP5.D1, XTMP4.Q1
VEXT $8, KS_M1.B16, KS_M1.B16, XTMP1.B16
VPMULL XTMP1.D1, XTMP2.D1, XTMP5.Q1
VEXT $8, XTMP2.B16, XTMP2.B16, XTMP1.B16
VPMULL KS_M2.D1, XTMP1.D1, XTMP6.Q1
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[1]
VMOV XDIGEST.D[0], R10
MOVD (AX), R11
EOR R10, R11
MOVD R11, (AX)
RET
// func eia256RoundTag16(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag16(SB),NOSPLIT,$0
MOVD t+0(FP), AX
MOVD ks+8(FP), BX
MOVD p+16(FP), CX
LOAD_GLOBAL_DATA()
// Reverse data bytes
VLD1 (CX), [XDATA.B16]
VAND BIT_REV_AND_TAB.B16, XDATA.B16, XTMP3.B16
VUSHR $4, XDATA.B16, XTMP1.B16
VTBL XTMP3.B16, [BIT_REV_TAB_H.B16], XTMP3.B16
VTBL XTMP1.B16, [BIT_REV_TAB_L.B16], XTMP1.B16
VEOR XTMP1.B16, XTMP3.B16, XTMP3.B16 // XTMP3 - bit reverse data bytes
// ZUC authentication part, 4x32 data bits
// setup KS
VLD1 (BX), [XTMP1.B16, XTMP2.B16]
VST1 [XTMP2.B16], (BX) // Copy last 16 bytes of KS to the front
// TODO: Any better solution??? We can use VTBL, but there are no performance imprvoement if we can't reuse MASK constant
VMOVQ $0x0302010007060504, $0x070605040b0a0908, XTMP4
VTBL XTMP4.B16, [XTMP1.B16], KS_L.B16 // KS bits [63:32 31:0 95:64 63:32]
VTBL XTMP4.B16, [XTMP2.B16], KS_M2.B16 // KS bits [191:160 159:128 223:192 191:160]
VMOVQ $0x0b0a09080f0e0d0c, $0x0b0a09080f0e0d0c, XTMP4
VTBL XTMP4.B16, [XTMP2.B16], KS_H.B16 // KS bits [255:224 223:192 255:224 223:192]
VDUP XTMP1.S[3], KS_M1.S4
VMOV XTMP1.S[2], KS_M1.S[1]
VMOV XTMP2.S[0], KS_M1.S[2] // KS bits [127:96 95:64 159:128 127:96]
// setup DATA
VTBL SHUF_MASK_DW0_DW1.B16, [XTMP3.B16], XTMP1.B16 // XTMP1 - Data bits [31:0 0s 63:32 0s]
VTBL SHUF_MASK_DW2_DW3.B16, [XTMP3.B16], XTMP2.B16 // XTMP2 - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPMULL KS_L.D1, XTMP1.D1, XTMP3.Q1
VPMULL2 KS_L.D2, XTMP1.D2, XTMP4.Q1
VPMULL KS_M1.D1, XTMP2.D1, XTMP5.Q1
VPMULL2 KS_M1.D2, XTMP2.D2, XTMP6.Q1
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
// Move previous result to low 32 bits and XOR with previous digest
VMOV XTMP3.S[1], XDIGEST.S[0]
// Prepare data and calculate bits 63-32 of tag
VEXT $8, KS_L.B16, KS_L.B16, XTMP5.B16
VPMULL XTMP5.D1, XTMP1.D1, XTMP3.Q1
VEXT $8, XTMP1.B16, XTMP1.B16, XTMP5.B16
VPMULL KS_M1.D1, XTMP5.D1, XTMP4.Q1
VEXT $8, KS_M1.B16, KS_M1.B16, XTMP6.B16
VPMULL XTMP6.D1, XTMP2.D1, XTMP5.Q1
VEXT $8, XTMP2.B16, XTMP2.B16, KS_L.B16
VPMULL KS_M2.D1, KS_L.D1, XTMP6.Q1
// XOR all the products and keep only 32-63 bits
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[1]
// Prepare data and calculate bits 95-64 of tag
VPMULL KS_M1.D1, XTMP1.D1, XTMP3.Q1
VPMULL2 KS_M1.D2, XTMP1.D2, XTMP4.Q1
VPMULL KS_M2.D1, XTMP2.D1, XTMP5.Q1
VPMULL2 KS_M2.D2, XTMP2.D2, XTMP6.Q1
// XOR all the products and move bits 63-32 to bits 95-64
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[2]
// Prepare data and calculate bits 127-96 of tag
VEXT $8, KS_M1.B16, KS_M1.B16, XTMP5.B16
VPMULL XTMP5.D1, XTMP1.D1, XTMP3.Q1
VEXT $8, XTMP1.B16, XTMP1.B16, XTMP5.B16
VPMULL KS_M2.D1, XTMP5.D1, XTMP4.Q1
VEXT $8, KS_M2.B16, KS_M2.B16, XTMP6.B16
VPMULL XTMP6.D1, XTMP2.D1, XTMP5.Q1
VEXT $8, XTMP2.B16, XTMP2.B16, KS_L.B16
VPMULL KS_H.D1, KS_L.D1, XTMP6.Q1
// XOR all the products and move bits 63-32 to bits 127-96
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[3]
VLD1 (AX), [XTMP1.B16]
VEOR XTMP1.B16, XDIGEST.B16, XDIGEST.B16
VST1 [XDIGEST.B16], (AX)
RET

View File

@ -1,196 +0,0 @@
// Copyright 2024 Sun Yimin. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
//go:build (ppc64 || ppc64le) && !purego
#include "textflag.h"
#define XTMP1 V0
#define XTMP2 V1
#define XTMP3 V2
#define XTMP4 V3
#define XTMP5 V4
#define XTMP6 V5
#define XDATA V6
#define XDIGEST V7
#define KS_L V8
#define KS_M1 V9
#define KS_M2 V10
#define KS_H V11
#define BIT_REV_TAB_L V12
#define BIT_REV_TAB_H V13
#define ZERO V15
#define PTR R7
// func eia256RoundTag8(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag8(SB),NOSPLIT,$0
MOVD t+0(FP), R3
MOVD ks+8(FP), R4
MOVD p+16(FP), R5
#ifndef GOARCH_ppc64le
MOVD $·rcon(SB), PTR // PTR points to rcon addr
LVX (PTR), XTMP1
ADD $0x10, PTR
#else
MOVD $·rcon+0x10(SB), PTR // PTR points to rcon addr (skipping permute vector)
#endif
LXVD2X (R5)(R0), XDATA
#ifndef GOARCH_ppc64le
VPERM XDATA, XDATA, XTMP1, XDATA
#endif
VSPLTISB $4, XTMP2;
LXVD2X (PTR)(R0), BIT_REV_TAB_L
VSLB BIT_REV_TAB_L, XTMP2, BIT_REV_TAB_H
VPERMXOR BIT_REV_TAB_L, BIT_REV_TAB_H, XDATA, XTMP3 // XTMP3 - bit reverse data bytes
// ZUC authentication part, 4x32 data bits
// setup data
VSPLTISB $0, ZERO
MOVD $0x10, R8
LXVD2X (PTR)(R8), XTMP4
VPERM ZERO, XTMP3, XTMP4, XTMP1
MOVD $0x20, R8
LXVD2X (PTR)(R8), XTMP4
VPERM ZERO, XTMP3, XTMP4, XTMP2
// setup KS
LXVW4X (R4), KS_L
MOVD $8, R8
LXVW4X (R8)(R4), KS_M1
MOVD $16, R8
LXVW4X (R8)(R4), KS_M2
MOVD $0x30, R8
LXVD2X (PTR)(R8), XTMP4
VPERM KS_L, KS_L, XTMP4, KS_L
VPERM KS_M1, KS_M1, XTMP4, KS_M1
VPERM KS_M2, KS_M2, XTMP4, KS_M2
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPMSUMD XTMP1, KS_L, XTMP3
VPMSUMD XTMP2, KS_M1, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSPLTW $2, XTMP3, XDIGEST
// Calculate upper 32 bits of tag
VSLDOI $8, KS_M1, KS_L, KS_L
VPMSUMD XTMP1, KS_L, XTMP3
VSLDOI $8, KS_M2, KS_M1, KS_M1
VPMSUMD XTMP2, KS_M1, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSPLTW $2, XTMP3, XTMP3
// Update tag
#ifdef GOARCH_ppc64le
VSLDOI $12, XTMP3, XDIGEST, XDIGEST
#else
VSLDOI $12, XDIGEST, XTMP3, XDIGEST
#endif
MFVSRD XDIGEST, R8
MOVD (R3), R6
XOR R6, R8, R6
MOVD R6, (R3)
// Copy last 16 bytes of KS to the front
MOVD $16, R8
LXVD2X (R8)(R4), XTMP1
STXVD2X XTMP1, (R4)(R0)
RET
// func eia256RoundTag16(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag16(SB),NOSPLIT,$0
MOVD t+0(FP), R3
MOVD ks+8(FP), R4
MOVD p+16(FP), R5
#ifndef GOARCH_ppc64le
MOVD $·rcon(SB), PTR // PTR points to rcon addr
LVX (PTR), XTMP1
ADD $0x10, PTR
#else
MOVD $·rcon+0x10(SB), PTR // PTR points to rcon addr (skipping permute vector)
#endif
LXVD2X (R5)(R0), XDATA
#ifndef GOARCH_ppc64le
VPERM XDATA, XDATA, XTMP1, XDATA
#endif
VSPLTISB $4, XTMP2;
LXVD2X (PTR)(R0), BIT_REV_TAB_L
VSLB BIT_REV_TAB_L, XTMP2, BIT_REV_TAB_H
VPERMXOR BIT_REV_TAB_L, BIT_REV_TAB_H, XDATA, XTMP3 // XTMP3 - bit reverse data bytes
// ZUC authentication part, 4x32 data bits
// setup data
VSPLTISB $0, ZERO
MOVD $0x10, R8
LXVD2X (PTR)(R8), XTMP4
VPERM ZERO, XTMP3, XTMP4, XTMP1
MOVD $0x20, R8
LXVD2X (PTR)(R8), XTMP4
VPERM ZERO, XTMP3, XTMP4, XTMP2
// setup KS
LXVW4X (R4), KS_L
MOVD $8, R8
LXVW4X (R8)(R4), KS_M1
MOVD $16, R8
LXVW4X (R8)(R4), KS_M2
VOR KS_M2, KS_M2, KS_H
MOVD $0x30, R8
LXVD2X (PTR)(R8), XTMP4
VPERM KS_L, KS_L, XTMP4, KS_L
VPERM KS_M1, KS_M1, XTMP4, KS_M1
VPERM KS_M2, KS_M2, XTMP4, KS_M2
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPMSUMD XTMP1, KS_L, XTMP3
VPMSUMD XTMP2, KS_M1, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSLDOI $12, XTMP3, XTMP3, XDIGEST
// Calculate upper 32 bits of tag
VSLDOI $8, KS_M1, KS_L, KS_L
VPMSUMD XTMP1, KS_L, XTMP3
VSLDOI $8, KS_M2, KS_M1, XTMP5
VPMSUMD XTMP2, XTMP5, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSLDOI $8, XTMP3, XTMP3, XTMP3
VSLDOI $4, XDIGEST, XTMP3, XDIGEST
// calculate bits 95-64 of tag
VPMSUMD XTMP1, KS_M1, XTMP3
VPMSUMD XTMP2, KS_M2, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSLDOI $8, XTMP3, XTMP3, XTMP3
VSLDOI $4, XDIGEST, XTMP3, XDIGEST
// calculate bits 127-96 of tag
VSLDOI $8, KS_M2, KS_M1, KS_M1
VPMSUMD XTMP1, KS_M1, XTMP3
VSLDOI $8, KS_H, KS_M2, KS_M2
VPMSUMD XTMP2, KS_M2, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSLDOI $8, XTMP3, XTMP3, XTMP3
VSLDOI $4, XDIGEST, XTMP3, XDIGEST
// Update tag
LXVW4X (R3)(R0), XTMP1
VXOR XTMP1, XDIGEST, XDIGEST
STXVW4X XDIGEST, (R3)
// Copy last 16 bytes of KS to the front
MOVD $16, R8
LXVD2X (R8)(R4), XTMP1
STXVD2X XTMP1, (R4)(R0)
RET

View File

@ -9,13 +9,13 @@ import (
var supportsGFMUL = cpuid.HasGFMUL || cpuid.HasVPMSUMD
//go:noescape
func eia3Round16B(t *uint32, keyStream *uint32, p *byte, tagSize int)
func eiaRoundTag4(t *uint32, keyStream *uint32, p *byte)
func block(m *ZUC128Mac, p []byte) {
if supportsGFMUL {
for len(p) >= chunk {
m.genKeywords(m.k0[4:])
eia3Round16B(&m.t, &m.k0[0], &p[0], m.tagSize)
eiaRoundTag4(&m.t, &m.k0[0], &p[0])
p = p[chunk:]
}
} else {

View File

@ -37,32 +37,41 @@ GLOBL shuf_mask_dw2_0_dw3_0<>(SB), RODATA, $16
#define KS_M2 X11
#define KS_H X12
// func eia3Round16B(t *uint32, keyStream *uint32, p *byte, tagSize int)
TEXT ·eia3Round16B(SB),NOSPLIT,$0
#define BIT_REVERSE_SSE(XDATA, XTMP1, XTMP2) \
MOVOU bit_reverse_and_table<>(SB), XTMP1; \
MOVOU XDATA, XTMP2; \
PAND XTMP1, XTMP2; \
PANDN XDATA, XTMP1; \
PSRLQ $4, XTMP1; \
MOVOU bit_reverse_table_h<>(SB), XDATA; \
PSHUFB XTMP2, XDATA; \
MOVOU bit_reverse_table_l<>(SB), XTMP2; \
PSHUFB XTMP1, XTMP2; \
PXOR XTMP2, XDATA
#define BIT_REVERSE_AVX(XDATA, XTMP1, XTMP2) \
VMOVDQU bit_reverse_and_table<>(SB), XTMP1; \
VPAND XTMP1, XDATA, XTMP2; \
VPANDN XDATA, XTMP1, XTMP1; \
VPSRLD $4, XTMP1, XTMP1; \
VMOVDQU bit_reverse_table_h<>(SB), XDATA; \
VPSHUFB XTMP2, XDATA, XDATA; \
VMOVDQU bit_reverse_table_l<>(SB), XTMP2; \
VPSHUFB XTMP1, XTMP2, XTMP1; \
VPOR XTMP1, XDATA, XDATA
// func eiaRoundTag4(t *uint32, keyStream *uint32, p *byte)
TEXT ·eiaRoundTag4(SB),NOSPLIT,$0
MOVQ t+0(FP), AX
MOVQ ks+8(FP), BX
MOVQ p+16(FP), CX
MOVQ tagSize+24(FP), DX
CMPB ·useAVX(SB), $1
JE avx
// Reverse data bytes
MOVUPS (0)(CX), XDATA
MOVOU bit_reverse_and_table<>(SB), XTMP4
MOVOU XDATA, XTMP2
PAND XTMP4, XTMP2
PANDN XDATA, XTMP4
PSRLQ $4, XTMP4
MOVOU bit_reverse_table_h<>(SB), XTMP3
PSHUFB XTMP2, XTMP3
MOVOU bit_reverse_table_l<>(SB), XTMP1
PSHUFB XTMP4, XTMP1
PXOR XTMP1, XTMP3 // XTMP3 - bit reverse data bytes
BIT_REVERSE_SSE(XDATA, XTMP1, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup KS
@ -72,12 +81,12 @@ TEXT ·eia3Round16B(SB),NOSPLIT,$0
PSHUFD $0x61, XTMP2, KS_M1 // KS bits [127:96 95:64 159:128 127:96]
// setup DATA
MOVOU XTMP3, XTMP1
MOVOU XDATA, XTMP1
PSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XTMP1
MOVOU XTMP1, XTMP2 // XTMP1/2 - Data bits [31:0 0s 63:32 0s]
PSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XTMP3
MOVOU XTMP3, XDIGEST // XDIGEST/XTMP3 - Data bits [95:64 0s 127:96 0s]
PSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XDATA
MOVOU XDATA, XDIGEST // XDIGEST/XDATA - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
@ -85,11 +94,11 @@ TEXT ·eia3Round16B(SB),NOSPLIT,$0
PCLMULQDQ $0x00, KS_L, XTMP1
PCLMULQDQ $0x11, KS_L, XTMP2
PCLMULQDQ $0x00, KS_M1, XDIGEST
PCLMULQDQ $0x11, KS_M1, XTMP3
PCLMULQDQ $0x11, KS_M1, XDATA
// XOR all products and move 32-bits to lower 32 bits
PXOR XTMP1, XTMP2
PXOR XTMP3, XDIGEST
PXOR XDATA, XDIGEST
PXOR XTMP2, XDIGEST
PSRLDQ $4, XDIGEST
@ -105,18 +114,8 @@ TEXT ·eia3Round16B(SB),NOSPLIT,$0
avx:
VMOVDQU (0)(CX), XDATA
// Reverse data bytes
VMOVDQU bit_reverse_and_table<>(SB), XTMP1
VPAND XTMP1, XDATA, XTMP2
VPANDN XDATA, XTMP1, XTMP3
VPSRLD $4, XTMP3, XTMP3
VMOVDQU bit_reverse_table_h<>(SB), XTMP1
VPSHUFB XTMP2, XTMP1, XTMP4
VMOVDQU bit_reverse_table_l<>(SB), XTMP1
VPSHUFB XTMP3, XTMP1, XTMP1
VPOR XTMP1, XTMP4, XTMP4
BIT_REVERSE_AVX(XDATA, XTMP1, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup KS
@ -125,9 +124,9 @@ avx:
// setup DATA
// Data bytes [31:0 0s 63:32 0s]
VPSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XTMP4, XTMP1
VPSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XDATA, XTMP1
// Data bytes [95:64 0s 127:96 0s]
VPSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XTMP4, XTMP2
VPSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XDATA, XTMP2
// clmul
// xor the results from 4 32-bit words together
@ -140,14 +139,339 @@ avx:
VPXOR XTMP3, XTMP4, XTMP3
VPXOR XTMP5, XTMP6, XTMP5
VPXOR XTMP3, XTMP5, XDIGEST
VPSLLDQ $4, XDIGEST, XDIGEST
VMOVQ XDIGEST, R10
SHRQ $32, R10
// Update tag
MOVL XDIGEST, R10
XORL R10, (AX)
// Copy last 16 bytes of KS to the front
VMOVDQU (4*4)(BX), XTMP1
VMOVDQU XTMP1, (0*4)(BX)
VZEROUPPER
RET
// func eia256RoundTag8(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag8(SB),NOSPLIT,$0
MOVQ t+0(FP), AX
MOVQ ks+8(FP), BX
MOVQ p+16(FP), CX
CMPB ·useAVX(SB), $1
JE avx
// Reverse data bytes
MOVUPS (0)(CX), XDATA
BIT_REVERSE_SSE(XDATA, XTMP1, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup KS
MOVUPS (0*4)(BX), XTMP1
MOVUPS (2*4)(BX), XTMP2
MOVUPS (4*4)(BX), XTMP4
PSHUFD $0x61, XTMP1, KS_L // KS bits [63:32 31:0 95:64 63:32]
PSHUFD $0x61, XTMP2, KS_M1 // KS bits [127:96 95:64 159:128 127:96]
PSHUFD $0x61, XTMP4, KS_M2 // KS bits [191:160 159:128 223:192 191:160]
// setup DATA
MOVOU XDATA, XTMP1
PSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XTMP1
MOVOU XTMP1, XTMP2 // XTMP1/2 - Data bits [31:0 0s 63:32 0s]
PSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XDATA
MOVOU XDATA, XDIGEST // XDIGEST/XDATA - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
// Save data for following products
MOVOU XTMP2, XTMP5 // Data bits [31:0 0s 63:32 0s]
MOVOU XDATA, XTMP6 // Data bits [95:64 0s 127:96 0s]
// Calculate lower 32 bits of tag
PCLMULQDQ $0x00, KS_L, XTMP1
PCLMULQDQ $0x11, KS_L, XTMP2
PCLMULQDQ $0x00, KS_M1, XDIGEST
PCLMULQDQ $0x11, KS_M1, XDATA
// XOR all products and move bits 63-32 bits to lower 32 bits
PXOR XTMP1, XTMP2
PXOR XDATA, XDIGEST
PXOR XTMP2, XDIGEST
PSLLDQ $8, XDIGEST // Move bits 63-32 to bits 127-96
// Prepare data and calculate bits 63-32 of tag
MOVOU XTMP5, XTMP1
MOVOU XTMP5, XTMP2
MOVOU XTMP6, XTMP3
MOVOU XTMP6, XTMP4
PCLMULQDQ $0x10, KS_L, XTMP1
PCLMULQDQ $0x01, KS_M1, XTMP2
PCLMULQDQ $0x10, KS_M1, XTMP3
PCLMULQDQ $0x01, KS_M2, XTMP4
// XOR all the products and keep only bits 63-32
PXOR XTMP2, XTMP1
PXOR XTMP4, XTMP3
PXOR XTMP3, XTMP1
PSRLDQ $4, XTMP1 // Move bits 63-32 to bits 31-0
PALIGNR $12, XDIGEST, XTMP1 // XTMP1 || XDIGEST
// Update tag
MOVQ XTMP1, R10
XORQ R10, (AX)
// Copy last 16 bytes of KS to the front
MOVUPS (4*4)(BX), XTMP1
MOVUPS XTMP1, (0*4)(BX)
RET
avx:
VMOVDQU (0)(CX), XDATA
// Reverse data bytes
BIT_REVERSE_AVX(XDATA, XTMP1, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup KS
VPSHUFD $0x61, (0*4)(BX), KS_L // KS bits [63:32 31:0 95:64 63:32]
VPSHUFD $0x61, (2*4)(BX), KS_M1 // KS bits [63:32 31:0 95:64 63:32]
VPSHUFD $0x61, (4*4)(BX), KS_M2 // KS bits [191:160 159:128 223:192 191:160]
// setup DATA
// Data bytes [31:0 0s 63:32 0s]
VPSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XDATA, XTMP1
// Data bytes [95:64 0s 127:96 0s]
VPSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XDATA, XTMP2
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPCLMULQDQ $0x00, KS_L, XTMP1, XTMP3
VPCLMULQDQ $0x11, KS_L, XTMP1, XTMP4
VPCLMULQDQ $0x00, KS_M1, XTMP2, XTMP5
VPCLMULQDQ $0x11, KS_M1, XTMP2, XTMP6
VPXOR XTMP3, XTMP4, XTMP3
VPXOR XTMP5, XTMP6, XTMP5
VPXOR XTMP3, XTMP5, XTMP3
VPSLLDQ $8, XTMP3, XDIGEST
VPCLMULQDQ $0x10, KS_L, XTMP1, XTMP3
VPCLMULQDQ $0x01, KS_M1, XTMP1, XTMP4
VPCLMULQDQ $0x10, KS_M1, XTMP2, XTMP5
VPCLMULQDQ $0x01, KS_M2, XTMP2, XTMP6
// XOR all the products and keep only 32-63 bits
VPXOR XTMP4, XTMP3, XTMP3
VPXOR XTMP6, XTMP5, XTMP5
VPXOR XTMP5, XTMP3, XTMP3
VPSRLDQ $4, XTMP3, XTMP3
VPALIGNR $12, XDIGEST, XTMP3, XDIGEST
// Update tag
VMOVQ XDIGEST, R10
XORQ R10, (AX)
// Copy last 16 bytes of KS to the front
VMOVDQU (4*4)(BX), XTMP1
VMOVDQU XTMP1, (0*4)(BX)
RET
// func eia256RoundTag16(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag16(SB),NOSPLIT,$0
MOVQ t+0(FP), AX
MOVQ ks+8(FP), BX
MOVQ p+16(FP), CX
CMPB ·useAVX(SB), $1
JE avx
// Reverse data bytes
MOVUPS (0)(CX), XDATA
BIT_REVERSE_SSE(XDATA, XTMP1, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup KS
MOVUPS (0*4)(BX), XTMP1
MOVUPS (2*4)(BX), XTMP2
MOVUPS (4*4)(BX), XTMP4
PSHUFD $0x61, XTMP1, KS_L // KS bits [63:32 31:0 95:64 63:32]
PSHUFD $0x61, XTMP2, KS_M1 // KS bits [127:96 95:64 159:128 127:96]
PSHUFD $0x61, XTMP4, KS_M2 // KS bits [191:160 159:128 223:192 191:160]
PSHUFD $0xBB, XTMP4, KS_H // KS bits [255:224 223:192 255:224 223:192]
// setup DATA
MOVOU XDATA, XTMP1
PSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XTMP1
MOVOU XTMP1, XTMP2 // XTMP1/2 - Data bits [31:0 0s 63:32 0s]
PSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XDATA
MOVOU XDATA, XDIGEST // XDIGEST/XDATA - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
// Save data for following products
MOVOU XTMP2, XTMP5 // Data bits [31:0 0s 63:32 0s]
MOVOU XDATA, XTMP6 // Data bits [95:64 0s 127:96 0s]
// Calculate lower 32 bits of tag
PCLMULQDQ $0x00, KS_L, XTMP1
PCLMULQDQ $0x11, KS_L, XTMP2
PCLMULQDQ $0x00, KS_M1, XDIGEST
PCLMULQDQ $0x11, KS_M1, XDATA
// XOR all products and move bits 63-32 bits to lower 32 bits
PXOR XTMP1, XTMP2
PXOR XDATA, XDIGEST
PXOR XTMP2, XDIGEST
PSLLDQ $8, XDIGEST // Move bits 63-32 to bits 127-96
// Prepare data and calculate bits 63-32 of tag
MOVOU XTMP5, XTMP1
MOVOU XTMP5, XTMP2
MOVOU XTMP6, XTMP3
MOVOU XTMP6, XTMP4
PCLMULQDQ $0x10, KS_L, XTMP1
PCLMULQDQ $0x01, KS_M1, XTMP2
PCLMULQDQ $0x10, KS_M1, XTMP3
PCLMULQDQ $0x01, KS_M2, XTMP4
// XOR all the products and keep only bits 63-32
PXOR XTMP2, XTMP1
PXOR XTMP4, XTMP3
PXOR XTMP3, XTMP1
PSRLDQ $4, XTMP1 // Move bits 63-32 to bits 31-0
PALIGNR $4, XDIGEST, XTMP1 // XTMP1 || XDIGEST
// Prepare data and calculate bits 95-64 of tag
MOVOU XTMP5, XDIGEST
MOVOU XTMP5, XTMP2
MOVOU XTMP6, XTMP3
MOVOU XTMP6, XTMP4
PCLMULQDQ $0x00, KS_M1, XDIGEST
PCLMULQDQ $0x11, KS_M1, XTMP2
PCLMULQDQ $0x00, KS_M2, XTMP3
PCLMULQDQ $0x11, KS_M2, XTMP4
// XOR all the products and move bits 63-32 to bits 95-64
PXOR XTMP2, XDIGEST
PXOR XTMP4, XTMP3
PXOR XTMP3, XDIGEST
PSRLDQ $4, XDIGEST // Move bits 63-32 to bits 31-0
PALIGNR $4, XTMP1, XDIGEST // XDIGEST || XTMP1
// Prepare data and calculate bits 127-96 of tag
MOVOU XTMP5, XTMP1
MOVOU XTMP5, XTMP2
MOVOU XTMP6, XTMP3
MOVOU XTMP6, XTMP4
PCLMULQDQ $0x10, KS_M1, XTMP1
PCLMULQDQ $0x01, KS_M2, XTMP2
PCLMULQDQ $0x10, KS_M2, XTMP3
PCLMULQDQ $0x01, KS_H, XTMP4
// XOR all the products and move bits 63-32 to bits 127-96
PXOR XTMP2, XTMP1
PXOR XTMP4, XTMP3
PXOR XTMP3, XTMP1
PSRLDQ $4, XTMP1 // Move bits 63-32 to bits 31-0
PALIGNR $4, XDIGEST, XTMP1 // XTMP1 || XDIGEST
// Update tag
MOVUPS (AX), XDIGEST
PXOR XTMP1, XDIGEST
MOVUPS XDIGEST, (AX)
// Copy last 16 bytes of KS to the front
MOVUPS (4*4)(BX), XTMP1
MOVUPS XTMP1, (0*4)(BX)
RET
avx:
VMOVDQU (0)(CX), XDATA
// Reverse data bytes
BIT_REVERSE_AVX(XDATA, XTMP1, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup KS
VPSHUFD $0x61, (0*4)(BX), KS_L // KS bits [63:32 31:0 95:64 63:32]
VPSHUFD $0x61, (2*4)(BX), KS_M1 // KS bits [63:32 31:0 95:64 63:32]
VPSHUFD $0x61, (4*4)(BX), KS_M2 // KS bits [191:160 159:128 223:192 191:160]
VPSHUFD $0xBB, (4*4)(BX), KS_H // KS bits [255:224 223:192 255:224 223:192]
// setup DATA
// Data bytes [31:0 0s 63:32 0s]
VPSHUFB shuf_mask_dw0_0_dw1_0<>(SB), XDATA, XTMP1
// Data bytes [95:64 0s 127:96 0s]
VPSHUFB shuf_mask_dw2_0_dw3_0<>(SB), XDATA, XTMP2
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPCLMULQDQ $0x00, KS_L, XTMP1, XTMP3
VPCLMULQDQ $0x11, KS_L, XTMP1, XTMP4
VPCLMULQDQ $0x00, KS_M1, XTMP2, XTMP5
VPCLMULQDQ $0x11, KS_M1, XTMP2, XTMP6
VPXOR XTMP3, XTMP4, XTMP3
VPXOR XTMP5, XTMP6, XTMP5
VPXOR XTMP3, XTMP5, XTMP3
VPSLLDQ $8, XTMP3, XDIGEST
VPCLMULQDQ $0x10, KS_L, XTMP1, XTMP3
VPCLMULQDQ $0x01, KS_M1, XTMP1, XTMP4
VPCLMULQDQ $0x10, KS_M1, XTMP2, XTMP5
VPCLMULQDQ $0x01, KS_M2, XTMP2, XTMP6
// XOR all the products and keep only 32-63 bits
VPXOR XTMP4, XTMP3, XTMP3
VPXOR XTMP6, XTMP5, XTMP5
VPXOR XTMP5, XTMP3, XTMP3
VPSRLDQ $4, XTMP3, XTMP3
VPALIGNR $4, XDIGEST, XTMP3, XDIGEST
// Prepare data and calculate bits 95-64 of tag
VPCLMULQDQ $0x00, KS_M1, XTMP1, XTMP3
VPCLMULQDQ $0x11, KS_M1, XTMP1, XTMP4
VPCLMULQDQ $0x00, KS_M2, XTMP2, XTMP5
VPCLMULQDQ $0x11, KS_M2, XTMP2, XTMP6
// XOR all the products and move bits 63-32 to bits 95-64
VPXOR XTMP4, XTMP3, XTMP3
VPXOR XTMP6, XTMP5, XTMP5
VPXOR XTMP5, XTMP3, XTMP3
VPSRLDQ $4, XTMP3, XTMP3
VPALIGNR $4, XDIGEST, XTMP3, XDIGEST
// Prepare data and calculate bits 127-96 of tag
VPCLMULQDQ $0x10, KS_M1, XTMP1, XTMP3
VPCLMULQDQ $0x01, KS_M2, XTMP1, XTMP4
VPCLMULQDQ $0x10, KS_M2, XTMP2, XTMP5
VPCLMULQDQ $0x01, KS_H, XTMP2, XTMP6
// XOR all the products and move bits 63-32 to bits 127-96
VPXOR XTMP4, XTMP3, XTMP3
VPXOR XTMP6, XTMP5, XTMP5
VPXOR XTMP5, XTMP3, XTMP3
VPSRLDQ $4, XTMP3, XTMP3
VPALIGNR $4, XDIGEST, XTMP3, XDIGEST
// Update tag
VPXOR (AX), XDIGEST, XDIGEST
VMOVDQA XDIGEST, (AX)
// Copy last 16 bytes of KS to the front
VMOVDQU (4*4)(BX), XTMP1
VMOVDQU XTMP1, (0*4)(BX)
RET

View File

@ -2,15 +2,15 @@
#include "textflag.h"
DATA ·eia_const+0x00(SB)/8, $0x0e060a020c040800 // bit_reverse_table low
DATA ·eia_const+0x08(SB)/8, $0x0f070b030d050901
DATA ·eia_const+0x10(SB)/8, $0xe060a020c0408000 // bit_reverse_table high
DATA ·eia_const+0x18(SB)/8, $0xf070b030d0509010
DATA ·eia_const+0x20(SB)/8, $0xffffffff03020100 // SHUF_MASK_DW0_DW1
DATA ·eia_const+0x28(SB)/8, $0xffffffff07060504
DATA ·eia_const+0x30(SB)/8, $0xffffffff0b0a0908 // SHUF_MASK_DW2_DW3
DATA ·eia_const+0x38(SB)/8, $0xffffffff0f0e0d0c
GLOBL ·eia_const(SB), RODATA, $64
DATA eia_const<>+0x00(SB)/8, $0x0e060a020c040800 // bit_reverse_table low
DATA eia_const<>+0x08(SB)/8, $0x0f070b030d050901
DATA eia_const<>+0x10(SB)/8, $0xe060a020c0408000 // bit_reverse_table high
DATA eia_const<>+0x18(SB)/8, $0xf070b030d0509010
DATA eia_const<>+0x20(SB)/8, $0xffffffff03020100 // SHUF_MASK_DW0_DW1
DATA eia_const<>+0x28(SB)/8, $0xffffffff07060504
DATA eia_const<>+0x30(SB)/8, $0xffffffff0b0a0908 // SHUF_MASK_DW2_DW3
DATA eia_const<>+0x38(SB)/8, $0xffffffff0f0e0d0c
GLOBL eia_const<>(SB), RODATA, $64
#define AX R2
#define BX R3
@ -36,28 +36,29 @@ GLOBL ·eia_const(SB), RODATA, $64
#define SHUF_MASK_DW2_DW3 V24
#define LOAD_GLOBAL_DATA() \
MOVD $·eia_const(SB), R0 \
VLD1 (R0), [BIT_REV_TAB_L.B16, BIT_REV_TAB_H.B16, SHUF_MASK_DW0_DW1.B16, SHUF_MASK_DW2_DW3.B16] \
MOVW $0x0F0F0F0F, R0 \
VDUP R0, BIT_REV_AND_TAB.S4
MOVD $eia_const<>(SB), R0 \
VLD1 (R0), [BIT_REV_TAB_L.B16, BIT_REV_TAB_H.B16, SHUF_MASK_DW0_DW1.B16, SHUF_MASK_DW2_DW3.B16] \
MOVW $0x0F0F0F0F, R0 \
VDUP R0, BIT_REV_AND_TAB.S4
// func eia3Round16B(t *uint32, keyStream *uint32, p *byte, tagSize int)
TEXT ·eia3Round16B(SB),NOSPLIT,$0
#define BIT_REVERSE(XDATA, XTMP1, XTMP2) \
VAND BIT_REV_AND_TAB.B16, XDATA.B16, XTMP2.B16 \
VUSHR $4, XDATA.B16, XTMP1.B16 \
VTBL XTMP2.B16, [BIT_REV_TAB_H.B16], XTMP2.B16 \
VTBL XTMP1.B16, [BIT_REV_TAB_L.B16], XTMP1.B16 \
VEOR XTMP1.B16, XTMP2.B16, XDATA.B16
// func eiaRoundTag4(t *uint32, keyStream *uint32, p *byte)
TEXT ·eiaRoundTag4(SB),NOSPLIT,$0
MOVD t+0(FP), AX
MOVD ks+8(FP), BX
MOVD p+16(FP), CX
MOVD tagSize+24(FP), DX
LOAD_GLOBAL_DATA()
// Reverse data bytes
VLD1 (CX), [XDATA.B16]
VAND BIT_REV_AND_TAB.B16, XDATA.B16, XTMP3.B16
VUSHR $4, XDATA.B16, XTMP1.B16
VTBL XTMP3.B16, [BIT_REV_TAB_H.B16], XTMP3.B16
VTBL XTMP1.B16, [BIT_REV_TAB_L.B16], XTMP1.B16
VEOR XTMP1.B16, XTMP3.B16, XTMP3.B16 // XTMP3 - bit reverse data bytes
BIT_REVERSE(XDATA, XTMP1, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup KS
@ -72,8 +73,8 @@ TEXT ·eia3Round16B(SB),NOSPLIT,$0
VMOV XTMP2.S[0], KS_M1.S[2] // KS bits [127:96 95:64 159:128 127:96]
// setup DATA
VTBL SHUF_MASK_DW0_DW1.B16, [XTMP3.B16], XTMP1.B16 // XTMP1 - Data bits [31:0 0s 63:32 0s]
VTBL SHUF_MASK_DW2_DW3.B16, [XTMP3.B16], XTMP2.B16 // XTMP2 - Data bits [95:64 0s 127:96 0s]
VTBL SHUF_MASK_DW0_DW1.B16, [XDATA.B16], XTMP1.B16 // XTMP1 - Data bits [31:0 0s 63:32 0s]
VTBL SHUF_MASK_DW2_DW3.B16, [XDATA.B16], XTMP2.B16 // XTMP2 - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
@ -93,3 +94,169 @@ TEXT ·eia3Round16B(SB),NOSPLIT,$0
MOVW R11, (AX)
RET
// func eia256RoundTag8(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag8(SB),NOSPLIT,$0
MOVD t+0(FP), AX
MOVD ks+8(FP), BX
MOVD p+16(FP), CX
LOAD_GLOBAL_DATA()
// Reverse data bytes
VLD1 (CX), [XDATA.B16]
BIT_REVERSE(XDATA, XTMP1, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup KS
VLD1 (BX), [XTMP1.B16, XTMP2.B16]
VST1 [XTMP2.B16], (BX) // Copy last 16 bytes of KS to the front
// TODO: Any better solution???
VMOVQ $0x0302010007060504, $0x070605040b0a0908, XTMP4
VTBL XTMP4.B16, [XTMP1.B16], KS_L.B16 // KS bits [63:32 31:0 95:64 63:32]
VTBL XTMP4.B16, [XTMP2.B16], KS_M2.B16 // KS bits [191:160 159:128 223:192 191:160]
VDUP XTMP1.S[3], KS_M1.S4
VMOV XTMP1.S[2], KS_M1.S[1]
VMOV XTMP2.S[0], KS_M1.S[2] // KS bits [127:96 95:64 159:128 127:96]
// setup DATA
VTBL SHUF_MASK_DW0_DW1.B16, [XDATA.B16], XTMP1.B16 // XTMP1 - Data bits [31:0 0s 63:32 0s]
VTBL SHUF_MASK_DW2_DW3.B16, [XDATA.B16], XTMP2.B16 // XTMP2 - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPMULL KS_L.D1, XTMP1.D1, XTMP3.Q1
VPMULL2 KS_L.D2, XTMP1.D2, XTMP4.Q1
VPMULL KS_M1.D1, XTMP2.D1, XTMP5.Q1
VPMULL2 KS_M1.D2, XTMP2.D2, XTMP6.Q1
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
// Move previous result to low 32 bits and XOR with previous digest
VMOV XTMP3.S[1], XDIGEST.S[0]
// Prepare data and calculate bits 63-32 of tag
VEXT $8, KS_L.B16, KS_L.B16, XTMP5.B16
VPMULL XTMP5.D1, XTMP1.D1, XTMP3.Q1
VEXT $8, XTMP1.B16, XTMP1.B16, XTMP5.B16
VPMULL KS_M1.D1, XTMP5.D1, XTMP4.Q1
VEXT $8, KS_M1.B16, KS_M1.B16, XTMP1.B16
VPMULL XTMP1.D1, XTMP2.D1, XTMP5.Q1
VEXT $8, XTMP2.B16, XTMP2.B16, XTMP1.B16
VPMULL KS_M2.D1, XTMP1.D1, XTMP6.Q1
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[1]
VMOV XDIGEST.D[0], R10
MOVD (AX), R11
EOR R10, R11
MOVD R11, (AX)
RET
// func eia256RoundTag16(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag16(SB),NOSPLIT,$0
MOVD t+0(FP), AX
MOVD ks+8(FP), BX
MOVD p+16(FP), CX
LOAD_GLOBAL_DATA()
// Reverse data bytes
VLD1 (CX), [XDATA.B16]
BIT_REVERSE(XDATA, XTMP1, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup KS
VLD1 (BX), [XTMP1.B16, XTMP2.B16]
VST1 [XTMP2.B16], (BX) // Copy last 16 bytes of KS to the front
// TODO: Any better solution??? We can use VTBL, but there are no performance imprvoement if we can't reuse MASK constant
VMOVQ $0x0302010007060504, $0x070605040b0a0908, XTMP4
VTBL XTMP4.B16, [XTMP1.B16], KS_L.B16 // KS bits [63:32 31:0 95:64 63:32]
VTBL XTMP4.B16, [XTMP2.B16], KS_M2.B16 // KS bits [191:160 159:128 223:192 191:160]
VMOVQ $0x0b0a09080f0e0d0c, $0x0b0a09080f0e0d0c, XTMP4
VTBL XTMP4.B16, [XTMP2.B16], KS_H.B16 // KS bits [255:224 223:192 255:224 223:192]
VDUP XTMP1.S[3], KS_M1.S4
VMOV XTMP1.S[2], KS_M1.S[1]
VMOV XTMP2.S[0], KS_M1.S[2] // KS bits [127:96 95:64 159:128 127:96]
// setup DATA
VTBL SHUF_MASK_DW0_DW1.B16, [XDATA.B16], XTMP1.B16 // XTMP1 - Data bits [31:0 0s 63:32 0s]
VTBL SHUF_MASK_DW2_DW3.B16, [XDATA.B16], XTMP2.B16 // XTMP2 - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPMULL KS_L.D1, XTMP1.D1, XTMP3.Q1
VPMULL2 KS_L.D2, XTMP1.D2, XTMP4.Q1
VPMULL KS_M1.D1, XTMP2.D1, XTMP5.Q1
VPMULL2 KS_M1.D2, XTMP2.D2, XTMP6.Q1
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
// Move previous result to low 32 bits and XOR with previous digest
VMOV XTMP3.S[1], XDIGEST.S[0]
// Prepare data and calculate bits 63-32 of tag
VEXT $8, KS_L.B16, KS_L.B16, XTMP5.B16
VPMULL XTMP5.D1, XTMP1.D1, XTMP3.Q1
VEXT $8, XTMP1.B16, XTMP1.B16, XTMP5.B16
VPMULL KS_M1.D1, XTMP5.D1, XTMP4.Q1
VEXT $8, KS_M1.B16, KS_M1.B16, XTMP6.B16
VPMULL XTMP6.D1, XTMP2.D1, XTMP5.Q1
VEXT $8, XTMP2.B16, XTMP2.B16, KS_L.B16
VPMULL KS_M2.D1, KS_L.D1, XTMP6.Q1
// XOR all the products and keep only 32-63 bits
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[1]
// Prepare data and calculate bits 95-64 of tag
VPMULL KS_M1.D1, XTMP1.D1, XTMP3.Q1
VPMULL2 KS_M1.D2, XTMP1.D2, XTMP4.Q1
VPMULL KS_M2.D1, XTMP2.D1, XTMP5.Q1
VPMULL2 KS_M2.D2, XTMP2.D2, XTMP6.Q1
// XOR all the products and move bits 63-32 to bits 95-64
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[2]
// Prepare data and calculate bits 127-96 of tag
VEXT $8, KS_M1.B16, KS_M1.B16, XTMP5.B16
VPMULL XTMP5.D1, XTMP1.D1, XTMP3.Q1
VEXT $8, XTMP1.B16, XTMP1.B16, XTMP5.B16
VPMULL KS_M2.D1, XTMP5.D1, XTMP4.Q1
VEXT $8, KS_M2.B16, KS_M2.B16, XTMP6.B16
VPMULL XTMP6.D1, XTMP2.D1, XTMP5.Q1
VEXT $8, XTMP2.B16, XTMP2.B16, KS_L.B16
VPMULL KS_H.D1, KS_L.D1, XTMP6.Q1
// XOR all the products and move bits 63-32 to bits 127-96
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[3]
VLD1 (AX), [XTMP1.B16]
VEOR XTMP1.B16, XDIGEST.B16, XDIGEST.B16
VST1 [XDIGEST.B16], (AX)
RET

View File

@ -6,43 +6,53 @@
#include "textflag.h"
DATA ·rcon+0x00(SB)/8, $0x0706050403020100 // Permute for vector doubleword endian swap
DATA ·rcon+0x08(SB)/8, $0x0f0e0d0c0b0a0908
DATA ·rcon+0x10(SB)/8, $0x0008040c020a060e // bit_reverse_table_l
DATA ·rcon+0x18(SB)/8, $0x0109050d030b070f // bit_reverse_table_l
DATA ·rcon+0x20(SB)/8, $0x0000000010111213 // data mask
DATA ·rcon+0x28(SB)/8, $0x0000000014151617 // data mask
DATA ·rcon+0x30(SB)/8, $0x0000000018191a1b // data mask
DATA ·rcon+0x38(SB)/8, $0x000000001c1d1e1f // data mask
DATA ·rcon+0x40(SB)/8, $0x0405060708090a0b // ks mask
DATA ·rcon+0x48(SB)/8, $0x0001020304050607 // ks mask
GLOBL ·rcon(SB), RODATA, $80
DATA eia_const<>+0x00(SB)/8, $0x0706050403020100 // Permute for vector doubleword endian swap
DATA eia_const<>+0x08(SB)/8, $0x0f0e0d0c0b0a0908
DATA eia_const<>+0x10(SB)/8, $0x0008040c020a060e // bit_reverse_table_l
DATA eia_const<>+0x18(SB)/8, $0x0109050d030b070f // bit_reverse_table_l
DATA eia_const<>+0x20(SB)/8, $0x0000000010111213 // data mask
DATA eia_const<>+0x28(SB)/8, $0x0000000014151617 // data mask
DATA eia_const<>+0x30(SB)/8, $0x0000000018191a1b // data mask
DATA eia_const<>+0x38(SB)/8, $0x000000001c1d1e1f // data mask
DATA eia_const<>+0x40(SB)/8, $0x0405060708090a0b // ks mask
DATA eia_const<>+0x48(SB)/8, $0x0001020304050607 // ks mask
GLOBL eia_const<>(SB), RODATA, $80
#define XTMP1 V0
#define XTMP2 V1
#define XTMP3 V2
#define XTMP4 V3
#define XTMP5 V4
#define XTMP6 V5
#define XDATA V6
#define XDIGEST V7
#define KS_L V8
#define KS_M1 V9
#define KS_M2 V10
#define KS_H V11
#define BIT_REV_TAB_L V12
#define BIT_REV_TAB_H V13
#define ZERO V15
#define PTR R7
// func eia3Round16B(t *uint32, keyStream *uint32, p *byte, tagSize int)
TEXT ·eia3Round16B(SB),NOSPLIT,$0
#define BIT_REVERSE(addr, IN, OUT, XTMP) \
LXVD2X (addr)(R0), BIT_REV_TAB_L \
VSPLTISB $4, XTMP \
VSLB BIT_REV_TAB_L, XTMP, BIT_REV_TAB_H \
VPERMXOR BIT_REV_TAB_L, BIT_REV_TAB_H, IN, OUT
// func eiaRoundTag4(t *uint32, keyStream *uint32, p *byte)
TEXT ·eiaRoundTag4(SB),NOSPLIT,$0
MOVD t+0(FP), R3
MOVD ks+8(FP), R4
MOVD p+16(FP), R5
#ifndef GOARCH_ppc64le
MOVD $·rcon(SB), PTR // PTR points to rcon addr
MOVD $eia_const<>(SB), PTR
LVX (PTR), XTMP1
ADD $0x10, PTR
#else
MOVD $·rcon+0x10(SB), PTR // PTR points to rcon addr (skipping permute vector)
MOVD $eia_const<>+0x10(SB), PTR
#endif
LXVD2X (R5)(R0), XDATA
@ -50,10 +60,7 @@ TEXT ·eia3Round16B(SB),NOSPLIT,$0
VPERM XDATA, XDATA, XTMP1, XDATA
#endif
VSPLTISB $4, XTMP2;
LXVD2X (PTR)(R0), BIT_REV_TAB_L
VSLB BIT_REV_TAB_L, XTMP2, BIT_REV_TAB_H
VPERMXOR BIT_REV_TAB_L, BIT_REV_TAB_H, XDATA, XTMP3 // XTMP3 - bit reverse data bytes
BIT_REVERSE(PTR, XDATA, XTMP3, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup data
@ -95,3 +102,169 @@ TEXT ·eia3Round16B(SB),NOSPLIT,$0
STXVD2X XTMP1, (R4)(R0)
RET
// func eia256RoundTag8(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag8(SB),NOSPLIT,$0
MOVD t+0(FP), R3
MOVD ks+8(FP), R4
MOVD p+16(FP), R5
#ifndef GOARCH_ppc64le
MOVD $eia_const<>(SB), PTR
LVX (PTR), XTMP1
ADD $0x10, PTR
#else
MOVD $eia_const<>+0x10(SB), PTR
#endif
LXVD2X (R5)(R0), XDATA
#ifndef GOARCH_ppc64le
VPERM XDATA, XDATA, XTMP1, XDATA
#endif
BIT_REVERSE(PTR, XDATA, XTMP3, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup data
VSPLTISB $0, ZERO
MOVD $0x10, R8
LXVD2X (PTR)(R8), XTMP4
VPERM ZERO, XTMP3, XTMP4, XTMP1
MOVD $0x20, R8
LXVD2X (PTR)(R8), XTMP4
VPERM ZERO, XTMP3, XTMP4, XTMP2
// setup KS
LXVW4X (R4), KS_L
MOVD $8, R8
LXVW4X (R8)(R4), KS_M1
MOVD $16, R8
LXVW4X (R8)(R4), KS_M2
MOVD $0x30, R8
LXVD2X (PTR)(R8), XTMP4
VPERM KS_L, KS_L, XTMP4, KS_L
VPERM KS_M1, KS_M1, XTMP4, KS_M1
VPERM KS_M2, KS_M2, XTMP4, KS_M2
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPMSUMD XTMP1, KS_L, XTMP3
VPMSUMD XTMP2, KS_M1, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSPLTW $2, XTMP3, XDIGEST
// Calculate upper 32 bits of tag
VSLDOI $8, KS_M1, KS_L, KS_L
VPMSUMD XTMP1, KS_L, XTMP3
VSLDOI $8, KS_M2, KS_M1, KS_M1
VPMSUMD XTMP2, KS_M1, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSPLTW $2, XTMP3, XTMP3
// Update tag
#ifdef GOARCH_ppc64le
VSLDOI $12, XTMP3, XDIGEST, XDIGEST
#else
VSLDOI $12, XDIGEST, XTMP3, XDIGEST
#endif
MFVSRD XDIGEST, R8
MOVD (R3), R6
XOR R6, R8, R6
MOVD R6, (R3)
// Copy last 16 bytes of KS to the front
MOVD $16, R8
LXVD2X (R8)(R4), XTMP1
STXVD2X XTMP1, (R4)(R0)
RET
// func eia256RoundTag16(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag16(SB),NOSPLIT,$0
MOVD t+0(FP), R3
MOVD ks+8(FP), R4
MOVD p+16(FP), R5
#ifndef GOARCH_ppc64le
MOVD $eia_const<>(SB), PTR
LVX (PTR), XTMP1
ADD $0x10, PTR
#else
MOVD $eia_const<>+0x10(SB), PTR
#endif
LXVD2X (R5)(R0), XDATA
#ifndef GOARCH_ppc64le
VPERM XDATA, XDATA, XTMP1, XDATA
#endif
BIT_REVERSE(PTR, XDATA, XTMP3, XTMP2)
// ZUC authentication part, 4x32 data bits
// setup data
VSPLTISB $0, ZERO
MOVD $0x10, R8
LXVD2X (PTR)(R8), XTMP4
VPERM ZERO, XTMP3, XTMP4, XTMP1
MOVD $0x20, R8
LXVD2X (PTR)(R8), XTMP4
VPERM ZERO, XTMP3, XTMP4, XTMP2
// setup KS
LXVW4X (R4), KS_L
MOVD $8, R8
LXVW4X (R8)(R4), KS_M1
MOVD $16, R8
LXVW4X (R8)(R4), KS_M2
VOR KS_M2, KS_M2, KS_H
MOVD $0x30, R8
LXVD2X (PTR)(R8), XTMP4
VPERM KS_L, KS_L, XTMP4, KS_L
VPERM KS_M1, KS_M1, XTMP4, KS_M1
VPERM KS_M2, KS_M2, XTMP4, KS_M2
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPMSUMD XTMP1, KS_L, XTMP3
VPMSUMD XTMP2, KS_M1, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSLDOI $12, XTMP3, XTMP3, XDIGEST
// Calculate upper 32 bits of tag
VSLDOI $8, KS_M1, KS_L, KS_L
VPMSUMD XTMP1, KS_L, XTMP3
VSLDOI $8, KS_M2, KS_M1, XTMP5
VPMSUMD XTMP2, XTMP5, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSLDOI $8, XTMP3, XTMP3, XTMP3
VSLDOI $4, XDIGEST, XTMP3, XDIGEST
// calculate bits 95-64 of tag
VPMSUMD XTMP1, KS_M1, XTMP3
VPMSUMD XTMP2, KS_M2, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSLDOI $8, XTMP3, XTMP3, XTMP3
VSLDOI $4, XDIGEST, XTMP3, XDIGEST
// calculate bits 127-96 of tag
VSLDOI $8, KS_M2, KS_M1, KS_M1
VPMSUMD XTMP1, KS_M1, XTMP3
VSLDOI $8, KS_H, KS_M2, KS_M2
VPMSUMD XTMP2, KS_M2, XTMP4
VXOR XTMP3, XTMP4, XTMP3
VSLDOI $8, XTMP3, XTMP3, XTMP3
VSLDOI $4, XDIGEST, XTMP3, XDIGEST
// Update tag
LXVW4X (R3)(R0), XTMP1
VXOR XTMP1, XDIGEST, XDIGEST
STXVW4X XDIGEST, (R3)
// Copy last 16 bytes of KS to the front
MOVD $16, R8
LXVD2X (R8)(R4), XTMP1
STXVD2X XTMP1, (R4)(R0)
RET