mldsa: improve sign/verify performance

This commit is contained in:
Sun Yimin 2025-06-03 10:38:48 +08:00 committed by GitHub
parent b218e76328
commit 5084ea06e3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 279 additions and 156 deletions

View File

@ -21,6 +21,7 @@ import (
"encoding/asn1"
"errors"
"io"
"sync"
)
const (
@ -108,7 +109,25 @@ type PrivateKey44 struct {
s1 [l44]ringElement // private secret of size L with short coefficients (-4..4) or (-2..2)
s2 [k44]ringElement // private secret of size K with short coefficients (-4..4) or (-2..2)
t0 [k44]ringElement // the Polynomial encoding of the 13 LSB of each coefficient of the uncompressed public key polynomial t. This is saved as part of the private key.
s1NTTCache [l44]nttElement
s2NTTCache [k44]nttElement
t0NTTCache [k44]nttElement
a [k44 * l44]nttElement // a is generated and stored in NTT representation
nttOnce sync.Once
}
func (sk *PrivateKey44) ensureNTT() {
sk.nttOnce.Do(func() {
for i := range sk.s1NTTCache {
sk.s1NTTCache[i] = ntt(sk.s1[i])
}
for i := range sk.s2NTTCache {
sk.s2NTTCache[i] = ntt(sk.s2[i])
}
for i := range sk.t0NTTCache {
sk.t0NTTCache[i] = ntt(sk.t0[i])
}
})
}
// A Key44 is the key pair for the ML-DSA-44 signature scheme.
@ -123,7 +142,9 @@ type PublicKey44 struct {
rho [32]byte
t1 [k44]ringElement
tr [64]byte // H(pk, 64), need to further check if public key requires it
tNTTCache [k44]nttElement
a [k44 * l44]nttElement // a is generated and stored in NTT representation
nttOnce sync.Once
}
// PublicKey generates and returns the corresponding public key for the given
@ -161,6 +182,18 @@ func (pk *PublicKey44) bytes(b []byte) []byte {
return b
}
func (pk *PublicKey44) ensureNTT() {
pk.nttOnce.Do(func() {
t := pk.t1
for i := range k44 {
for j := range t[i] {
t[i][j] <<= d
}
pk.tNTTCache[i] = ntt(t[i])
}
})
}
// Bytes returns the byte representation of the PrivateKey44.
// It copies the internal seed (xi) into a fixed-size byte array
// and returns it as a slice.
@ -456,18 +489,6 @@ func (sk *PrivateKey44) SignWithPreHash(rand io.Reader, message, context []byte,
// See FIPS 204, Algorithm 7 ML-DSA.Sign_internal()
func (sk *PrivateKey44) signInternal(seed, mu []byte) ([]byte, error) {
var s1NTT [l44]nttElement
var s2NTT [k44]nttElement
var t0NTT [k44]nttElement
for i := range s1NTT {
s1NTT[i] = ntt(sk.s1[i])
}
for i := range s2NTT {
s2NTT[i] = ntt(sk.s2[i])
}
for i := range t0NTT {
t0NTT[i] = ntt(sk.t0[i])
}
var rho2 [64 + 2]byte
H := sha3.NewSHAKE256()
H.Write(sk.k[:])
@ -476,22 +497,35 @@ func (sk *PrivateKey44) signInternal(seed, mu []byte) ([]byte, error) {
H.Read(rho2[:64])
A := &sk.a
sk.ensureNTT()
zNormThreshold := int(gamma1TwoPower17 - beta44)
r0NormThreshold := int(gamma2QMinus1Div88 - beta44)
// rejection sampling loop
for kappa := 0; ; kappa = kappa + l44 {
// expand mask
var y [l44]ringElement
var (
y [l44]ringElement
yNTT [l44]nttElement
)
for i := range l44 {
index := kappa + i
rho2[64] = byte(index)
rho2[65] = byte(index >> 8)
y[i] = expandMask(rho2[:], gamma1TwoPower17)
}
// compute y in NTT form
for i := range l44 {
yNTT[i] = ntt(y[i])
}
// compute w and w1
var w, w1 [k44]ringElement
var wNTT [k44]nttElement
var (
w, w1 [k44]ringElement
wNTT [k44]nttElement
)
for i := range w {
for j := range y {
wNTT[i] = polyAdd(wNTT[i], nttMul(ntt(y[j]), A[i*l44+j]))
for j := range yNTT {
wNTT[i] = polyAdd(wNTT[i], nttMul(yNTT[j], A[i*l44+j]))
}
w[i] = inverseNTT(wNTT[i])
// high bits
@ -500,8 +534,10 @@ func (sk *PrivateKey44) signInternal(seed, mu []byte) ([]byte, error) {
}
}
// commitment hash
var cTilde [lambda128 / 4]byte
var w1Encoded [encodingSize6]byte
var (
cTilde [lambda128 / 4]byte
w1Encoded [encodingSize6]byte
)
H.Reset()
H.Write(mu[:])
for i := range k44 {
@ -512,18 +548,20 @@ func (sk *PrivateKey44) signInternal(seed, mu []byte) ([]byte, error) {
// verifier's challenge
cNTT := ntt(sampleInBall(cTilde[:], tau39))
var cs1 [l44]ringElement
var cs2 [k44]ringElement
var z [l44]ringElement
var r0 [k44][n]int32
var (
cs1 [l44]ringElement
cs2 [k44]ringElement
z [l44]ringElement
r0 [k44][n]int32
)
// compute <<cs1>> and z = <<cs1>> + y
for i := range l44 {
cs1[i] = inverseNTT(nttMul(cNTT, s1NTT[i]))
cs1[i] = inverseNTT(nttMul(cNTT, sk.s1NTTCache[i]))
z[i] = polyAdd(cs1[i], y[i])
}
// compute <<cs2>> and r0 = LowBits(w - <<cs2>>)
for i := range k44 {
cs2[i] = inverseNTT(nttMul(cNTT, s2NTT[i]))
cs2[i] = inverseNTT(nttMul(cNTT, sk.s2NTTCache[i]))
for j := range cs2[i] {
_, r0[i][j] = decompose(fieldSub(w[i][j], cs2[i][j]), gamma2QMinus1Div88)
}
@ -532,13 +570,13 @@ func (sk *PrivateKey44) signInternal(seed, mu []byte) ([]byte, error) {
r0Norm := vectorInfinityNormSigned(r0[:], 0)
// if zNorm >= gamma1 - beta || r0Norm >= gamma2 - beta, then continue
if subtle.ConstantTimeLessOrEq(int(gamma1TwoPower17-beta44), zNorm)|subtle.ConstantTimeLessOrEq(int(gamma2QMinus1Div88-beta44), r0Norm) == 1 {
if subtle.ConstantTimeLessOrEq(zNormThreshold, zNorm)|subtle.ConstantTimeLessOrEq(r0NormThreshold, r0Norm) == 1 {
continue
}
// compute <<ct0>>
var ct0 [k44]ringElement
for i := range k44 {
ct0[i] = inverseNTT(nttMul(cNTT, t0NTT[i]))
ct0[i] = inverseNTT(nttMul(cNTT, sk.t0NTTCache[i]))
}
// compute infinity norm of <<ct0>>
ct0Norm := vectorInfinityNorm(ct0[:], 0)
@ -618,9 +656,14 @@ func (pk *PublicKey44) verifyInternal(sig, mu []byte) bool {
// Decode the signature
cTilde := sig[:lambda128/4]
sig = sig[lambda128/4:]
var z [l44]ringElement
var (
z [l44]ringElement
zNTT [l44]nttElement
)
for i := range l44 {
bitUnpackSignedTwoPower17(sig, &z[i])
zNTT[i] = ntt(z[i])
sig = sig[encodingSize18:]
}
zNorm := vectorInfinityNorm(z[:], 0)
@ -631,25 +674,23 @@ func (pk *PublicKey44) verifyInternal(sig, mu []byte) bool {
// verifier's challenge
cNTT := ntt(sampleInBall(cTilde[:], tau39))
// t = t1 * 2^d
// tNTT = NTT(t)*cNTT
pk.ensureNTT()
// tNTT = tNTTCache*cNTT
var tNTT [k44]nttElement
t := pk.t1
for i := range k44 {
for j := range t[i] {
t[i][j] <<= d
}
tNTT[i] = nttMul(ntt(t[i]), cNTT)
tNTT[i] = nttMul(pk.tNTTCache[i], cNTT)
}
var w1, wApprox [k44]ringElement
var zNTT [k44]nttElement
var (
w1, wApprox [k44]ringElement
zNTTMulA [k44]nttElement
)
for i := range k44 {
for j := 0; j < l44; j++ {
zNTT[i] = polyAdd(zNTT[i], nttMul(ntt(z[j]), pk.a[i*l44+j]))
for j := range l44 {
zNTTMulA[i] = polyAdd(zNTTMulA[i], nttMul(zNTT[j], pk.a[i*l44+j]))
}
zNTT[i] = polySub(zNTT[i], tNTT[i])
wApprox[i] = inverseNTT(zNTT[i])
zNTTMulA[i] = polySub(zNTTMulA[i], tNTT[i])
wApprox[i] = inverseNTT(zNTTMulA[i])
}
H := sha3.NewSHAKE256()

View File

@ -14,6 +14,7 @@ import (
"encoding/asn1"
"errors"
"io"
"sync"
)
// A PrivateKey65 is the private key for the ML-DSA-65 signature scheme.
@ -24,7 +25,25 @@ type PrivateKey65 struct {
s1 [l65]ringElement // private secret of size L with short coefficients (-4..4) or (-2..2)
s2 [k65]ringElement // private secret of size K with short coefficients (-4..4) or (-2..2)
t0 [k65]ringElement // the Polynomial encoding of the 13 LSB of each coefficient of the uncompressed public key polynomial t. This is saved as part of the private key.
s1NTTCache [l65]nttElement
s2NTTCache [k65]nttElement
t0NTTCache [k65]nttElement
a [k65 * l65]nttElement // a is generated and stored in NTT representation
nttOnce sync.Once
}
func (sk *PrivateKey65) ensureNTT() {
sk.nttOnce.Do(func() {
for i := range sk.s1NTTCache {
sk.s1NTTCache[i] = ntt(sk.s1[i])
}
for i := range sk.s2NTTCache {
sk.s2NTTCache[i] = ntt(sk.s2[i])
}
for i := range sk.t0NTTCache {
sk.t0NTTCache[i] = ntt(sk.t0[i])
}
})
}
// A Key65 is the key pair for the ML-DSA-65 signature scheme.
@ -39,7 +58,9 @@ type PublicKey65 struct {
rho [32]byte
t1 [k65]ringElement
tr [64]byte // H(pk, 64), need to further check if public key requires it
tNTTCache [k65]nttElement
a [k65 * l65]nttElement // a is generated and stored in NTT representation
nttOnce sync.Once
}
// PublicKey generates and returns the corresponding public key for the given
@ -77,6 +98,18 @@ func (pk *PublicKey65) bytes(b []byte) []byte {
return b
}
func (pk *PublicKey65) ensureNTT() {
pk.nttOnce.Do(func() {
t := pk.t1
for i := range k65 {
for j := range t[i] {
t[i][j] <<= d
}
pk.tNTTCache[i] = ntt(t[i])
}
})
}
// Bytes returns the byte representation of the PrivateKey65.
// It copies the internal seed (xi) into a fixed-size byte array
// and returns it as a slice.
@ -372,18 +405,6 @@ func (sk *PrivateKey65) SignWithPreHash(rand io.Reader, message, context []byte,
// See FIPS 204, Algorithm 7 ML-DSA.Sign_internal()
func (sk *PrivateKey65) signInternal(seed, mu []byte) ([]byte, error) {
var s1NTT [l65]nttElement
var s2NTT [k65]nttElement
var t0NTT [k65]nttElement
for i := range s1NTT {
s1NTT[i] = ntt(sk.s1[i])
}
for i := range s2NTT {
s2NTT[i] = ntt(sk.s2[i])
}
for i := range t0NTT {
t0NTT[i] = ntt(sk.t0[i])
}
var rho2 [64 + 2]byte
H := sha3.NewSHAKE256()
H.Write(sk.k[:])
@ -392,22 +413,35 @@ func (sk *PrivateKey65) signInternal(seed, mu []byte) ([]byte, error) {
H.Read(rho2[:64])
A := &sk.a
sk.ensureNTT()
zNormThreshold := int(gamma1TwoPower19 - beta65)
r0NormThreshold := int(gamma2QMinus1Div32 - beta65)
// rejection sampling loop
for kappa := 0; ; kappa = kappa + l65 {
// expand mask
var y [l65]ringElement
var (
y [l65]ringElement
yNTT [l65]nttElement
)
for i := range l65 {
index := kappa + i
rho2[64] = byte(index)
rho2[65] = byte(index >> 8)
y[i] = expandMask(rho2[:], gamma1TwoPower19)
}
// compute y in NTT form
for i := range l65 {
yNTT[i] = ntt(y[i])
}
// compute w and w1
var w, w1 [k65]ringElement
var wNTT [k65]nttElement
var (
w, w1 [k65]ringElement
wNTT [k65]nttElement
)
for i := range w {
for j := range y {
wNTT[i] = polyAdd(wNTT[i], nttMul(ntt(y[j]), A[i*l65+j]))
for j := range yNTT {
wNTT[i] = polyAdd(wNTT[i], nttMul(yNTT[j], A[i*l65+j]))
}
w[i] = inverseNTT(wNTT[i])
// high bits
@ -416,8 +450,10 @@ func (sk *PrivateKey65) signInternal(seed, mu []byte) ([]byte, error) {
}
}
// commitment hash
var cTilde [lambda192 / 4]byte
var w1Encoded [encodingSize4]byte
var (
cTilde [lambda192 / 4]byte
w1Encoded [encodingSize4]byte
)
H.Reset()
H.Write(mu[:])
for i := range k65 {
@ -428,18 +464,20 @@ func (sk *PrivateKey65) signInternal(seed, mu []byte) ([]byte, error) {
// verifier's challenge
cNTT := ntt(sampleInBall(cTilde[:], tau49))
var cs1 [l65]ringElement
var cs2 [k65]ringElement
var z [l65]ringElement
var r0 [k65][n]int32
var (
cs1 [l65]ringElement
cs2 [k65]ringElement
z [l65]ringElement
r0 [k65][n]int32
)
// compute <<cs1>> and z = <<cs1>> + y
for i := range l65 {
cs1[i] = inverseNTT(nttMul(cNTT, s1NTT[i]))
cs1[i] = inverseNTT(nttMul(cNTT, sk.s1NTTCache[i]))
z[i] = polyAdd(cs1[i], y[i])
}
// compute <<cs2>> and r0 = LowBits(w - <<cs2>>)
for i := range k65 {
cs2[i] = inverseNTT(nttMul(cNTT, s2NTT[i]))
cs2[i] = inverseNTT(nttMul(cNTT, sk.s2NTTCache[i]))
for j := range cs2[i] {
_, r0[i][j] = decompose(fieldSub(w[i][j], cs2[i][j]), gamma2QMinus1Div32)
}
@ -448,13 +486,13 @@ func (sk *PrivateKey65) signInternal(seed, mu []byte) ([]byte, error) {
r0Norm := vectorInfinityNormSigned(r0[:], 0)
// if zNorm >= gamma1 - beta || r0Norm >= gamma2 - beta, then continue
if subtle.ConstantTimeLessOrEq(int(gamma1TwoPower19-beta65), zNorm)|subtle.ConstantTimeLessOrEq(int(gamma2QMinus1Div32-beta65), r0Norm) == 1 {
if subtle.ConstantTimeLessOrEq(zNormThreshold, zNorm)|subtle.ConstantTimeLessOrEq(r0NormThreshold, r0Norm) == 1 {
continue
}
// compute <<ct0>>
var ct0 [k65]ringElement
for i := range k65 {
ct0[i] = inverseNTT(nttMul(cNTT, t0NTT[i]))
ct0[i] = inverseNTT(nttMul(cNTT, sk.t0NTTCache[i]))
}
// compute infinity norm of <<ct0>>
ct0Norm := vectorInfinityNorm(ct0[:], 0)
@ -534,9 +572,14 @@ func (pk *PublicKey65) verifyInternal(sig, mu []byte) bool {
// Decode the signature
cTilde := sig[:lambda192/4]
sig = sig[lambda192/4:]
var z [l65]ringElement
var (
z [l65]ringElement
zNTT [l65]nttElement
)
for i := range l65 {
bitUnpackSignedTwoPower19(sig, &z[i])
zNTT[i] = ntt(z[i])
sig = sig[encodingSize20:]
}
zNorm := vectorInfinityNorm(z[:], 0)
@ -547,25 +590,23 @@ func (pk *PublicKey65) verifyInternal(sig, mu []byte) bool {
// verifier's challenge
cNTT := ntt(sampleInBall(cTilde[:], tau49))
// t = t1 * 2^d
// tNTT = NTT(t)*cNTT
pk.ensureNTT()
// tNTT = tNTTCache*cNTT
var tNTT [k65]nttElement
t := pk.t1
for i := range k65 {
for j := range t[i] {
t[i][j] <<= d
}
tNTT[i] = nttMul(ntt(t[i]), cNTT)
tNTT[i] = nttMul(pk.tNTTCache[i], cNTT)
}
var w1, wApprox [k65]ringElement
var zNTT [k65]nttElement
var (
w1, wApprox [k65]ringElement
zNTTMulA [k65]nttElement
)
for i := range k65 {
for j := 0; j < l65; j++ {
zNTT[i] = polyAdd(zNTT[i], nttMul(ntt(z[j]), pk.a[i*l65+j]))
for j := range l65 {
zNTTMulA[i] = polyAdd(zNTTMulA[i], nttMul(zNTT[j], pk.a[i*l65+j]))
}
zNTT[i] = polySub(zNTT[i], tNTT[i])
wApprox[i] = inverseNTT(zNTT[i])
zNTTMulA[i] = polySub(zNTTMulA[i], tNTT[i])
wApprox[i] = inverseNTT(zNTTMulA[i])
}
H := sha3.NewSHAKE256()

View File

@ -14,6 +14,7 @@ import (
"encoding/asn1"
"errors"
"io"
"sync"
)
// A PrivateKey87 is the private key for the ML-DSA-87 signature scheme.
@ -24,7 +25,25 @@ type PrivateKey87 struct {
s1 [l87]ringElement // private secret of size L with short coefficients (-4..4) or (-2..2)
s2 [k87]ringElement // private secret of size K with short coefficients (-4..4) or (-2..2)
t0 [k87]ringElement // the Polynomial encoding of the 13 LSB of each coefficient of the uncompressed public key polynomial t. This is saved as part of the private key.
s1NTTCache [l87]nttElement
s2NTTCache [k87]nttElement
t0NTTCache [k87]nttElement
a [k87 * l87]nttElement // a is generated and stored in NTT representation
nttOnce sync.Once
}
func (sk *PrivateKey87) ensureNTT() {
sk.nttOnce.Do(func() {
for i := range sk.s1NTTCache {
sk.s1NTTCache[i] = ntt(sk.s1[i])
}
for i := range sk.s2NTTCache {
sk.s2NTTCache[i] = ntt(sk.s2[i])
}
for i := range sk.t0NTTCache {
sk.t0NTTCache[i] = ntt(sk.t0[i])
}
})
}
// A Key87 is the key pair for the ML-DSA-87 signature scheme.
@ -39,7 +58,9 @@ type PublicKey87 struct {
rho [32]byte
t1 [k87]ringElement
tr [64]byte // H(pk, 64), need to further check if public key requires it
tNTTCache [k87]nttElement
a [k87 * l87]nttElement // a is generated and stored in NTT representation
nttOnce sync.Once
}
// PublicKey generates and returns the corresponding public key for the given
@ -77,6 +98,18 @@ func (pk *PublicKey87) bytes(b []byte) []byte {
return b
}
func (pk *PublicKey87) ensureNTT() {
pk.nttOnce.Do(func() {
t := pk.t1
for i := range k87 {
for j := range t[i] {
t[i][j] <<= d
}
pk.tNTTCache[i] = ntt(t[i])
}
})
}
// Bytes returns the byte representation of the PrivateKey87.
// It copies the internal seed (xi) into a fixed-size byte array
// and returns it as a slice.
@ -372,18 +405,6 @@ func (sk *PrivateKey87) SignWithPreHash(rand io.Reader, message, context []byte,
// See FIPS 204, Algorithm 7 ML-DSA.Sign_internal()
func (sk *PrivateKey87) signInternal(seed, mu []byte) ([]byte, error) {
var s1NTT [l87]nttElement
var s2NTT [k87]nttElement
var t0NTT [k87]nttElement
for i := range s1NTT {
s1NTT[i] = ntt(sk.s1[i])
}
for i := range s2NTT {
s2NTT[i] = ntt(sk.s2[i])
}
for i := range t0NTT {
t0NTT[i] = ntt(sk.t0[i])
}
var rho2 [64 + 2]byte
H := sha3.NewSHAKE256()
H.Write(sk.k[:])
@ -392,22 +413,35 @@ func (sk *PrivateKey87) signInternal(seed, mu []byte) ([]byte, error) {
H.Read(rho2[:64])
A := &sk.a
sk.ensureNTT()
zNormThreshold := int(gamma1TwoPower19 - beta87)
r0NormThreshold := int(gamma2QMinus1Div32 - beta87)
// rejection sampling loop
for kappa := 0; ; kappa = kappa + l87 {
// expand mask
var y [l87]ringElement
var (
y [l87]ringElement
yNTT [l87]nttElement
)
for i := range l87 {
index := kappa + i
rho2[64] = byte(index)
rho2[65] = byte(index >> 8)
y[i] = expandMask(rho2[:], gamma1TwoPower19)
}
// compute y in NTT form
for i := range l87 {
yNTT[i] = ntt(y[i])
}
// compute w and w1
var w, w1 [k87]ringElement
var wNTT [k87]nttElement
var (
w, w1 [k87]ringElement
wNTT [k87]nttElement
)
for i := range w {
for j := range y {
wNTT[i] = polyAdd(wNTT[i], nttMul(ntt(y[j]), A[i*l87+j]))
for j := range yNTT {
wNTT[i] = polyAdd(wNTT[i], nttMul(yNTT[j], A[i*l87+j]))
}
w[i] = inverseNTT(wNTT[i])
// high bits
@ -416,8 +450,10 @@ func (sk *PrivateKey87) signInternal(seed, mu []byte) ([]byte, error) {
}
}
// commitment hash
var cTilde [lambda256 / 4]byte
var w1Encoded [encodingSize4]byte
var (
cTilde [lambda256 / 4]byte
w1Encoded [encodingSize4]byte
)
H.Reset()
H.Write(mu[:])
for i := range k87 {
@ -428,18 +464,20 @@ func (sk *PrivateKey87) signInternal(seed, mu []byte) ([]byte, error) {
// verifier's challenge
cNTT := ntt(sampleInBall(cTilde[:], tau60))
var cs1 [l87]ringElement
var cs2 [k87]ringElement
var z [l87]ringElement
var r0 [k87][n]int32
var (
cs1 [l87]ringElement
cs2 [k87]ringElement
z [l87]ringElement
r0 [k87][n]int32
)
// compute <<cs1>> and z = <<cs1>> + y
for i := range l87 {
cs1[i] = inverseNTT(nttMul(cNTT, s1NTT[i]))
cs1[i] = inverseNTT(nttMul(cNTT, sk.s1NTTCache[i]))
z[i] = polyAdd(cs1[i], y[i])
}
// compute <<cs2>> and r0 = LowBits(w - <<cs2>>)
for i := range k87 {
cs2[i] = inverseNTT(nttMul(cNTT, s2NTT[i]))
cs2[i] = inverseNTT(nttMul(cNTT, sk.s2NTTCache[i]))
for j := range cs2[i] {
_, r0[i][j] = decompose(fieldSub(w[i][j], cs2[i][j]), gamma2QMinus1Div32)
}
@ -448,13 +486,13 @@ func (sk *PrivateKey87) signInternal(seed, mu []byte) ([]byte, error) {
r0Norm := vectorInfinityNormSigned(r0[:], 0)
// if zNorm >= gamma1 - beta || r0Norm >= gamma2 - beta, then continue
if subtle.ConstantTimeLessOrEq(int(gamma1TwoPower19-beta87), zNorm)|subtle.ConstantTimeLessOrEq(int(gamma2QMinus1Div32-beta87), r0Norm) == 1 {
if subtle.ConstantTimeLessOrEq(zNormThreshold, zNorm)|subtle.ConstantTimeLessOrEq(r0NormThreshold, r0Norm) == 1 {
continue
}
// compute <<ct0>>
var ct0 [k87]ringElement
for i := range k87 {
ct0[i] = inverseNTT(nttMul(cNTT, t0NTT[i]))
ct0[i] = inverseNTT(nttMul(cNTT, sk.t0NTTCache[i]))
}
// compute infinity norm of <<ct0>>
ct0Norm := vectorInfinityNorm(ct0[:], 0)
@ -534,9 +572,14 @@ func (pk *PublicKey87) verifyInternal(sig, mu []byte) bool {
// Decode the signature
cTilde := sig[:lambda256/4]
sig = sig[lambda256/4:]
var z [l87]ringElement
var (
z [l87]ringElement
zNTT [l87]nttElement
)
for i := range l87 {
bitUnpackSignedTwoPower19(sig, &z[i])
zNTT[i] = ntt(z[i])
sig = sig[encodingSize20:]
}
zNorm := vectorInfinityNorm(z[:], 0)
@ -547,25 +590,23 @@ func (pk *PublicKey87) verifyInternal(sig, mu []byte) bool {
// verifier's challenge
cNTT := ntt(sampleInBall(cTilde[:], tau60))
// t = t1 * 2^d
// tNTT = NTT(t)*cNTT
pk.ensureNTT()
// tNTT = tNTTCache*cNTT
var tNTT [k87]nttElement
t := pk.t1
for i := range k87 {
for j := range t[i] {
t[i][j] <<= d
}
tNTT[i] = nttMul(ntt(t[i]), cNTT)
tNTT[i] = nttMul(pk.tNTTCache[i], cNTT)
}
var w1, wApprox [k87]ringElement
var zNTT [k87]nttElement
var (
w1, wApprox [k87]ringElement
zNTTMulA [k87]nttElement
)
for i := range k87 {
for j := 0; j < l87; j++ {
zNTT[i] = polyAdd(zNTT[i], nttMul(ntt(z[j]), pk.a[i*l87+j]))
for j := range l87 {
zNTTMulA[i] = polyAdd(zNTTMulA[i], nttMul(zNTT[j], pk.a[i*l87+j]))
}
zNTT[i] = polySub(zNTT[i], tNTT[i])
wApprox[i] = inverseNTT(zNTT[i])
zNTTMulA[i] = polySub(zNTTMulA[i], tNTT[i])
wApprox[i] = inverseNTT(zNTTMulA[i])
}
H := sha3.NewSHAKE256()