zuc: add comments

This commit is contained in:
Sun Yimin 2023-09-05 17:25:31 +08:00 committed by GitHub
parent 5a85197445
commit 4423ede309
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 147 additions and 92 deletions

View File

@ -89,52 +89,55 @@ GLOBL flip_mask<>(SB), RODATA, $16
SHRL n, b \ SHRL n, b \
ORL b, a ORL b, a
// Rotate left 5 bits in each byte, within an XMM register, SSE version.
#define Rotl_5_SSE(XDATA, XTMP0) \ #define Rotl_5_SSE(XDATA, XTMP0) \
MOVOU XDATA, XTMP0 \ MOVOU XDATA, XTMP0 \
PSLLQ $5, XTMP0 \ // should use pslld PSLLL $5, XTMP0 \
PSRLQ $3, XDATA \ // should use psrld PSRLL $3, XDATA \
PAND Top3_bits_of_the_byte<>(SB), XTMP0 \ PAND Top3_bits_of_the_byte<>(SB), XTMP0 \
PAND Bottom5_bits_of_the_byte<>(SB), XDATA \ PAND Bottom5_bits_of_the_byte<>(SB), XDATA \
POR XTMP0, XDATA POR XTMP0, XDATA
// Compute 16 S0 box values from 16 bytes, SSE version.
#define S0_comput_SSE(IN_OUT, XTMP1, XTMP2) \ #define S0_comput_SSE(IN_OUT, XTMP1, XTMP2) \
MOVOU IN_OUT, XTMP1 \ MOVOU IN_OUT, XTMP1 \
\ \
PAND Low_nibble_mask<>(SB), IN_OUT \ PAND Low_nibble_mask<>(SB), IN_OUT \ // x2
\ \
PAND High_nibble_mask<>(SB), XTMP1 \ PAND High_nibble_mask<>(SB), XTMP1 \
PSRLQ $4, XTMP1 \ PSRLQ $4, XTMP1 \ // x1
\ \
MOVOU P1<>(SB), XTMP2 \ MOVOU P1<>(SB), XTMP2 \
PSHUFB IN_OUT, XTMP2 \ PSHUFB IN_OUT, XTMP2 \ // P1[x2]
PXOR XTMP1, XTMP2 \ PXOR XTMP1, XTMP2 \ // q = x1 ^ P1[x2], XTMP1 free
\ \
MOVOU P2<>(SB), XTMP1 \ MOVOU P2<>(SB), XTMP1 \
PSHUFB XTMP2, XTMP1 \ PSHUFB XTMP2, XTMP1 \ // P2[q]
PXOR IN_OUT, XTMP1 \ PXOR IN_OUT, XTMP1 \ // r = x2 ^ P2[q]; IN_OUT free
\ \
MOVOU P3<>(SB), IN_OUT \ MOVOU P3<>(SB), IN_OUT \
PSHUFB XTMP1, IN_OUT \ PSHUFB XTMP1, IN_OUT \ // P3[r]
PXOR XTMP2, IN_OUT \ PXOR XTMP2, IN_OUT \ // s = q ^ P3[r], XTMP2 free
\ \ // s << 4 (since high nibble of each byte is 0, no masking is required)
PSLLQ $4, IN_OUT \ PSLLQ $4, IN_OUT \
POR XTMP1, IN_OUT \ POR XTMP1, IN_OUT \ // t = (s << 4) | r
Rotl_5_SSE(IN_OUT, XTMP1) Rotl_5_SSE(IN_OUT, XTMP1)
// Perform 8x8 matrix multiplication using lookup tables with partial results // Perform 8x8 matrix multiplication using lookup tables with partial results
// for high and low nible of each input byte // for high and low nible of each input byte, SSE versiion.
#define MUL_PSHUFB_SSE(XIN, XLO, XHI_OUT, XTMP) \ #define MUL_PSHUFB_SSE(XIN, XLO, XHI_OUT, XTMP) \
\ // Get low nibble of input data
MOVOU Low_nibble_mask<>(SB), XTMP \ MOVOU Low_nibble_mask<>(SB), XTMP \
PAND XIN, XTMP \ PAND XIN, XTMP \
\ \ // Get low nibble of output
PSHUFB XTMP, XLO \ PSHUFB XTMP, XLO \
\ \ // Get high nibble of input data
MOVOU High_nibble_mask<>(SB), XTMP \ MOVOU High_nibble_mask<>(SB), XTMP \
PAND XIN, XTMP \ PAND XIN, XTMP \
PSRLQ $4, XTMP \ PSRLQ $4, XTMP \
\ \ // Get high nibble of output
PSHUFB XTMP, XHI_OUT \ PSHUFB XTMP, XHI_OUT \
\ \ // XOR high and low nibbles to get full bytes
PXOR XLO, XHI_OUT PXOR XLO, XHI_OUT
// Compute 16 S1 box values from 16 bytes, stored in XMM register // Compute 16 S1 box values from 16 bytes, stored in XMM register
@ -150,7 +153,7 @@ GLOBL flip_mask<>(SB), RODATA, $16
MOVOU Comb_matrix_mul_high_nibble<>(SB), XIN_OUT \ MOVOU Comb_matrix_mul_high_nibble<>(SB), XIN_OUT \
MUL_PSHUFB_SSE(XTMP2, XTMP1, XIN_OUT, XTMP3) MUL_PSHUFB_SSE(XTMP2, XTMP1, XIN_OUT, XTMP3)
// Rotate left 5 bits in each byte, within an XMM register, AVX version.
#define Rotl_5_AVX(XDATA, XTMP0) \ #define Rotl_5_AVX(XDATA, XTMP0) \
VPSLLD $5, XDATA, XTMP0 \ VPSLLD $5, XDATA, XTMP0 \
VPSRLD $3, XDATA, XDATA \ VPSRLD $3, XDATA, XDATA \
@ -158,81 +161,106 @@ GLOBL flip_mask<>(SB), RODATA, $16
VPAND Bottom5_bits_of_the_byte<>(SB), XDATA, XDATA \ VPAND Bottom5_bits_of_the_byte<>(SB), XDATA, XDATA \
VPOR XTMP0, XDATA, XDATA VPOR XTMP0, XDATA, XDATA
// Compute 16 S0 box values from 16 bytes, AVX version.
#define S0_comput_AVX(IN_OUT, XTMP1, XTMP2) \ #define S0_comput_AVX(IN_OUT, XTMP1, XTMP2) \
VPAND High_nibble_mask<>(SB), IN_OUT, XTMP1 \ VPAND High_nibble_mask<>(SB), IN_OUT, XTMP1 \
VPSRLQ $4, XTMP1, XTMP1 \ VPSRLQ $4, XTMP1, XTMP1 \ // x1
\ \
VPAND Low_nibble_mask<>(SB), IN_OUT, IN_OUT \ VPAND Low_nibble_mask<>(SB), IN_OUT, IN_OUT \ // x2
\ \
VMOVDQU P1<>(SB), XTMP2 \ VMOVDQU P1<>(SB), XTMP2 \
VPSHUFB IN_OUT, XTMP2, XTMP2 \ VPSHUFB IN_OUT, XTMP2, XTMP2 \ // P1[x2]
VPXOR XTMP1, XTMP2, XTMP2 \ VPXOR XTMP1, XTMP2, XTMP2 \ // q = x1 ^ P1[x2] ; XTMP1 free
\ \
VMOVDQU P2<>(SB), XTMP1 \ VMOVDQU P2<>(SB), XTMP1 \
VPSHUFB XTMP2, XTMP1, XTMP1 \ VPSHUFB XTMP2, XTMP1, XTMP1 \ // P2[q]
VPXOR IN_OUT, XTMP1, XTMP1 \ VPXOR IN_OUT, XTMP1, XTMP1 \ // r = x2 ^ P2[q] ; IN_OUT free
\ \
VMOVDQU P3<>(SB), IN_OUT \ VMOVDQU P3<>(SB), IN_OUT \
VPSHUFB XTMP1, IN_OUT, IN_OUT \ VPSHUFB XTMP1, IN_OUT, IN_OUT \ // P3[r]
VPXOR XTMP2, IN_OUT, IN_OUT \ VPXOR XTMP2, IN_OUT, IN_OUT \ // s = q ^ P3[r] ; XTMP2 free
\ \ // s << 4 (since high nibble of each byte is 0, no masking is required)
VPSLLQ $4, IN_OUT, IN_OUT \ VPSLLQ $4, IN_OUT, IN_OUT \
VPOR XTMP1, IN_OUT, IN_OUT \ VPOR XTMP1, IN_OUT, IN_OUT \ // t = (s << 4) | r
Rotl_5_AVX(IN_OUT, XTMP1) Rotl_5_AVX(IN_OUT, XTMP1)
// Perform 8x8 matrix multiplication using lookup tables with partial results // Perform 8x8 matrix multiplication using lookup tables with partial results
// for high and low nible of each input byte // for high and low nible of each input byte, AVX version.
#define MUL_PSHUFB_AVX(XIN, XLO, XHI_OUT, XTMP) \ #define MUL_PSHUFB_AVX(XIN, XLO, XHI_OUT, XTMP) \
\ // Get low nibble of input data
VPAND Low_nibble_mask<>(SB), XIN, XTMP \ VPAND Low_nibble_mask<>(SB), XIN, XTMP \
\ // Get low nibble of output
VPSHUFB XTMP, XLO, XLO \ VPSHUFB XTMP, XLO, XLO \
\ // Get high nibble of input data
VPAND High_nibble_mask<>(SB), XIN, XTMP \ VPAND High_nibble_mask<>(SB), XIN, XTMP \
VPSRLQ $4, XTMP, XTMP \ VPSRLQ $4, XTMP, XTMP \
\ // Get high nibble of output
VPSHUFB XTMP, XHI_OUT, XHI_OUT \ VPSHUFB XTMP, XHI_OUT, XHI_OUT \
\ // XOR high and low nibbles to get full bytes
VPXOR XLO, XHI_OUT, XHI_OUT VPXOR XLO, XHI_OUT, XHI_OUT
// Compute 16 S1 box values from 16 bytes, stored in XMM register // Compute 16 S1 box values from 16 bytes, stored in XMM register
#define S1_comput_AVX(XIN_OUT, XTMP1, XTMP2, XTMP3) \ #define S1_comput_AVX(XIN_OUT, XTMP1, XTMP2, XTMP3) \
\ // gf2p8affineqb XIN_OUT, [rel Aes_to_Zuc], 0x00
VMOVDQU Aes_to_Zuc_mul_low_nibble<>(SB), XTMP1 \ VMOVDQU Aes_to_Zuc_mul_low_nibble<>(SB), XTMP1 \
VMOVDQU Aes_to_Zuc_mul_high_nibble<>(SB), XTMP2 \ VMOVDQU Aes_to_Zuc_mul_high_nibble<>(SB), XTMP2 \
MUL_PSHUFB_AVX(XIN_OUT, XTMP1, XTMP2, XTMP3) \ MUL_PSHUFB_AVX(XIN_OUT, XTMP1, XTMP2, XTMP3) \
\
VPSHUFB Shuf_mask<>(SB), XTMP2, XTMP2 \ VPSHUFB Shuf_mask<>(SB), XTMP2, XTMP2 \
VAESENCLAST Cancel_aes<>(SB), XTMP2, XTMP2 \ VAESENCLAST Cancel_aes<>(SB), XTMP2, XTMP2 \
\ // gf2p8affineqb XIN_OUT, [rel CombMatrix], 0x55
VMOVDQU Comb_matrix_mul_low_nibble<>(SB), XTMP1 \ VMOVDQU Comb_matrix_mul_low_nibble<>(SB), XTMP1 \
VMOVDQU Comb_matrix_mul_high_nibble<>(SB), XIN_OUT \ VMOVDQU Comb_matrix_mul_high_nibble<>(SB), XIN_OUT \
MUL_PSHUFB_AVX(XTMP2, XTMP1, XIN_OUT, XTMP3) MUL_PSHUFB_AVX(XTMP2, XTMP1, XIN_OUT, XTMP3)
#define F_R1 R10
#define F_R2 R11
#define BRC_X0 R12
#define BRC_X1 R13
#define BRC_X2 R14
#define BRC_X3 R15
// BITS_REORG(idx) // BITS_REORG(idx)
//
// params // params
// %1 - round number // %1 - round number
// uses // uses
// AX, BX, CX, DX // AX, BX, CX, DX
// return // return
// R12, R13, R14, R15 // updates R12, R13, R14, R15
//
#define BITS_REORG(idx) \ #define BITS_REORG(idx) \
MOVL (((15 + idx) % 16)*4)(SI), R12 \ MOVL (((15 + idx) % 16)*4)(SI), BRC_X0 \
MOVL (((14 + idx) % 16)*4)(SI), AX \ MOVL (((14 + idx) % 16)*4)(SI), AX \
MOVL (((11 + idx) % 16)*4)(SI), R13 \ MOVL (((11 + idx) % 16)*4)(SI), BRC_X1 \
MOVL (((9 + idx) % 16)*4)(SI), BX \ MOVL (((9 + idx) % 16)*4)(SI), BX \
MOVL (((7 + idx) % 16)*4)(SI), R14 \ MOVL (((7 + idx) % 16)*4)(SI), BRC_X2 \
MOVL (((5 + idx) % 16)*4)(SI), CX \ MOVL (((5 + idx) % 16)*4)(SI), CX \
MOVL (((2 + idx) % 16)*4)(SI), R15 \ MOVL (((2 + idx) % 16)*4)(SI), BRC_X3 \
MOVL (((0 + idx) % 16)*4)(SI), DX \ MOVL (((0 + idx) % 16)*4)(SI), DX \
SHRL $15, R12 \ SHRL $15, BRC_X0 \
SHLL $16, AX \ SHLL $16, AX \
SHLL $1, BX \ SHLL $1, BX \
SHLL $1, CX \ SHLL $1, CX \
SHLL $1, DX \ SHLL $1, DX \
SHLDL(R12, AX, $16) \ SHLDL(BRC_X0, AX, $16) \
SHLDL(R13, BX, $16) \ SHLDL(BRC_X1, BX, $16) \
SHLDL(R14, CX, $16) \ SHLDL(BRC_X2, CX, $16) \
SHLDL(R15, DX, $16) SHLDL(BRC_X3, DX, $16)
// LFSR_UPDT calculates the next state word and places/overwrites it to lfsr[idx % 16]
//
// params
// %1 - round number
// uses
// AX as input (ZERO or W), BX, CX, DX, R8, R9
#define LFSR_UPDT(idx) \ #define LFSR_UPDT(idx) \
MOVL (((0 + idx) % 16)*4)(SI), BX \ MOVL (((0 + idx) % 16)*4)(SI), BX \
MOVL (((4 + idx) % 16)*4)(SI), CX \ MOVL (((4 + idx) % 16)*4)(SI), CX \
MOVL (((10 + idx) % 16)*4)(SI), DX \ MOVL (((10 + idx) % 16)*4)(SI), DX \
MOVL (((13 + idx) % 16)*4)(SI), R8 \ MOVL (((13 + idx) % 16)*4)(SI), R8 \
MOVL (((15 + idx) % 16)*4)(SI), R9 \ MOVL (((15 + idx) % 16)*4)(SI), R9 \
\ // Calculate 64-bit LFSR feedback
ADDQ BX, AX \ ADDQ BX, AX \
SHLQ $8, BX \ SHLQ $8, BX \
SHLQ $20, CX \ SHLQ $20, CX \
@ -244,7 +272,7 @@ GLOBL flip_mask<>(SB), RODATA, $16
ADDQ DX, AX \ ADDQ DX, AX \
ADDQ R8, AX \ ADDQ R8, AX \
ADDQ R9, AX \ ADDQ R9, AX \
\ \ // Reduce it to 31-bit value
MOVQ AX, BX \ MOVQ AX, BX \
ANDQ $0x7FFFFFFF, AX \ ANDQ $0x7FFFFFFF, AX \
SHRQ $31, BX \ SHRQ $31, BX \
@ -253,21 +281,21 @@ GLOBL flip_mask<>(SB), RODATA, $16
MOVQ AX, BX \ MOVQ AX, BX \
SUBQ $0x7FFFFFFF, AX \ SUBQ $0x7FFFFFFF, AX \
CMOVQCS BX, AX \ CMOVQCS BX, AX \
\ \ // LFSR_S16 = (LFSR_S15++) = AX
MOVL AX, (((0 + idx) % 16)*4)(SI) MOVL AX, (((0 + idx) % 16)*4)(SI)
#define NONLIN_FUN() \ #define NONLIN_FUN() \
MOVL R12, AX \ MOVL BRC_X0, AX \
XORL R10, AX \ XORL F_R1, AX \ // F_R1 xor BRC_X1
ADDL R11, AX \ ADDL F_R2, AX \ // W = (F_R1 xor BRC_X1) + F_R2
ADDL R13, R10 \ // W1= F_R1 + BRC_X1 ADDL BRC_X1, F_R1 \ // W1= F_R1 + BRC_X1
XORL R14, R11 \ // W2= F_R2 ^ BRC_X2 XORL BRC_X2, F_R2 \ // W2= F_R2 ^ BRC_X2
\ \
MOVL R10, DX \ MOVL F_R1, DX \
MOVL R11, CX \ MOVL F_R2, CX \
SHLDL(DX, CX, $16) \ // P = (W1 << 16) | (W2 >> 16) SHLDL(DX, CX, $16) \ // P = (W1 << 16) | (W2 >> 16)
SHLDL(R11, R10, $16) \ // Q = (W2 << 16) | (W1 >> 16) SHLDL(F_R2, F_R1, $16) \ // Q = (W2 << 16) | (W1 >> 16)
MOVL DX, BX \ MOVL DX, BX \ // start L1
MOVL DX, CX \ MOVL DX, CX \
MOVL DX, R8 \ MOVL DX, R8 \
MOVL DX, R9 \ MOVL DX, R9 \
@ -279,21 +307,28 @@ GLOBL flip_mask<>(SB), RODATA, $16
XORL CX, DX \ XORL CX, DX \
XORL R8, DX \ XORL R8, DX \
XORL R9, DX \ // U = L1(P) = EDX, hi(RDX)=0 XORL R9, DX \ // U = L1(P) = EDX, hi(RDX)=0
MOVL R11, BX \ MOVL F_R2, BX \
MOVL R11, CX \ MOVL F_R2, CX \
MOVL R11, R8 \ MOVL F_R2, R8 \
MOVL R11, R9 \ MOVL F_R2, R9 \
ROLL $8, BX \ ROLL $8, BX \
ROLL $14, CX \ ROLL $14, CX \
ROLL $22, R8 \ ROLL $22, R8 \
ROLL $30, R9 \ ROLL $30, R9 \
XORL BX, R11 \ XORL BX, F_R2 \
XORL CX, R11 \ XORL CX, F_R2 \
XORL R8, R11 \ XORL R8, F_R2 \
XORL R9, R11 \ // V = L2(Q) = R11D, hi(R11)=0 XORL R9, F_R2 \ // V = L2(Q) = R11D, hi(R11)=0
SHLQ $32, R11 \ SHLQ $32, F_R2 \ // DX = V || U
XORQ R11, DX XORQ F_R2, DX
// Non-Linear function F, SSE version.
// uses
// AX, BX, CX, DX, R8, R9
// X0, X1, X2, X3, X4
// return
// W in AX
// updated F_R1, F_R2
#define NONLIN_FUN_SSE() \ #define NONLIN_FUN_SSE() \
NONLIN_FUN() \ NONLIN_FUN() \
MOVQ DX, X0 \ MOVQ DX, X0 \
@ -305,16 +340,17 @@ GLOBL flip_mask<>(SB), RODATA, $16
PAND mask_S0<>(SB), X1 \ PAND mask_S0<>(SB), X1 \
PXOR X1, X0 \ PXOR X1, X0 \
\ \
MOVL X0, R10 \ // F_R1 MOVL X0, F_R1 \ // F_R1
PEXTRD $1, X0, R11 PEXTRD $1, X0, F_R2
// RESTORE_LFSR_0, appends the first 4 bytes to last.
#define RESTORE_LFSR_0() \ #define RESTORE_LFSR_0() \
MOVL (0*4)(SI), AX \ MOVL (0*4)(SI), AX \ // first 4-bytes
MOVUPS (4)(SI), X0 \ MOVUPS (4)(SI), X0 \
MOVUPS (20)(SI), X1 \ MOVUPS (20)(SI), X1 \
MOVUPS (36)(SI), X2 \ MOVUPS (36)(SI), X2 \
MOVQ (52)(SI), BX \ MOVQ (52)(SI), BX \
MOVL (60)(SI), CX \ MOVL (60)(SI), CX \ // last 4-bytes
\ \
MOVUPS X0, (SI) \ MOVUPS X0, (SI) \
MOVUPS X1, (16)(SI) \ MOVUPS X1, (16)(SI) \
@ -323,12 +359,13 @@ GLOBL flip_mask<>(SB), RODATA, $16
MOVL CX, (56)(SI) \ MOVL CX, (56)(SI) \
MOVL AX, (60)(SI) MOVL AX, (60)(SI)
// RESTORE_LFSR_2, appends the first 8 bytes to last.
#define RESTORE_LFSR_2() \ #define RESTORE_LFSR_2() \
MOVQ (0)(SI), AX \ MOVQ (0)(SI), AX \ // first 8-bytes
MOVUPS (8)(SI), X0 \ MOVUPS (8)(SI), X0 \
MOVUPS (24)(SI), X1 \ MOVUPS (24)(SI), X1 \
MOVUPS (40)(SI), X2 \ MOVUPS (40)(SI), X2 \
MOVQ (56)(SI), BX \ MOVQ (56)(SI), BX \ // last 8-bytes
\ \
MOVUPS X0, (SI) \ MOVUPS X0, (SI) \
MOVUPS X1, (16)(SI) \ MOVUPS X1, (16)(SI) \
@ -336,17 +373,19 @@ GLOBL flip_mask<>(SB), RODATA, $16
MOVQ BX, (48)(SI) \ MOVQ BX, (48)(SI) \
MOVQ AX, (56)(SI) MOVQ AX, (56)(SI)
// RESTORE_LFSR_4, appends the first 16 bytes to last.
#define RESTORE_LFSR_4() \ #define RESTORE_LFSR_4() \
MOVUPS (0)(SI), X0 \ MOVUPS (0)(SI), X0 \ // first 16 bytes
MOVUPS (16)(SI), X1 \ MOVUPS (16)(SI), X1 \
MOVUPS (32)(SI), X2 \ MOVUPS (32)(SI), X2 \
MOVUPS (48)(SI), X3 \ MOVUPS (48)(SI), X3 \ // last 16 bytes
\ \
MOVUPS X1, (0)(SI) \ MOVUPS X1, (0)(SI) \
MOVUPS X2, (16)(SI) \ MOVUPS X2, (16)(SI) \
MOVUPS X3, (32)(SI) \ MOVUPS X3, (32)(SI) \
MOVUPS X0, (48)(SI) MOVUPS X0, (48)(SI)
// RESTORE_LFSR_8, appends the first 32 bytes to last.
#define RESTORE_LFSR_8() \ #define RESTORE_LFSR_8() \
MOVUPS (0)(SI), X0 \ MOVUPS (0)(SI), X0 \
MOVUPS (16)(SI), X1 \ MOVUPS (16)(SI), X1 \
@ -358,6 +397,13 @@ GLOBL flip_mask<>(SB), RODATA, $16
MOVUPS X0, (32)(SI) \ MOVUPS X0, (32)(SI) \
MOVUPS X1, (48)(SI) MOVUPS X1, (48)(SI)
// Non-Linear function F, AVX version.
// uses
// AX, BX, CX, DX, R8, R9
// X0, X1, X2, X3, X4
// return
// W in AX
// updated F_R1, F_R2
#define NONLIN_FUN_AVX() \ #define NONLIN_FUN_AVX() \
NONLIN_FUN() \ NONLIN_FUN() \
VMOVQ DX, X0 \ VMOVQ DX, X0 \
@ -373,20 +419,20 @@ GLOBL flip_mask<>(SB), RODATA, $16
VPEXTRD $1, X0, R11 VPEXTRD $1, X0, R11
#define LOAD_STATE() \ #define LOAD_STATE() \
MOVL OFFSET_FR1(SI), R10 \ MOVL OFFSET_FR1(SI), F_R1 \
MOVL OFFSET_FR2(SI), R11 \ MOVL OFFSET_FR2(SI), F_R2 \
MOVL OFFSET_BRC_X0(SI), R12 \ MOVL OFFSET_BRC_X0(SI), BRC_X0 \
MOVL OFFSET_BRC_X1(SI), R13 \ MOVL OFFSET_BRC_X1(SI), BRC_X1 \
MOVL OFFSET_BRC_X2(SI), R14 \ MOVL OFFSET_BRC_X2(SI), BRC_X2 \
MOVL OFFSET_BRC_X3(SI), R15 MOVL OFFSET_BRC_X3(SI), BRC_X3
#define SAVE_STATE() \ #define SAVE_STATE() \
MOVL R10, OFFSET_FR1(SI) \ MOVL F_R1, OFFSET_FR1(SI) \
MOVL R11, OFFSET_FR2(SI) \ MOVL F_R2, OFFSET_FR2(SI) \
MOVL R12, OFFSET_BRC_X0(SI) \ MOVL BRC_X0, OFFSET_BRC_X0(SI) \
MOVL R13, OFFSET_BRC_X1(SI) \ MOVL BRC_X1, OFFSET_BRC_X1(SI) \
MOVL R14, OFFSET_BRC_X2(SI) \ MOVL BRC_X2, OFFSET_BRC_X2(SI) \
MOVL R15, OFFSET_BRC_X3(SI) MOVL BRC_X3, OFFSET_BRC_X3(SI)
// func genKeywordAsm(s *zucState32) uint32 // func genKeywordAsm(s *zucState32) uint32
TEXT ·genKeywordAsm(SB),NOSPLIT,$0 TEXT ·genKeywordAsm(SB),NOSPLIT,$0
@ -401,10 +447,14 @@ TEXT ·genKeywordAsm(SB),NOSPLIT,$0
sse: sse:
NONLIN_FUN_SSE() NONLIN_FUN_SSE()
XORL R15, AX // (BRC_X3 xor W) as result
XORL BRC_X3, AX
MOVL AX, ret+8(FP) MOVL AX, ret+8(FP)
// LFSRWithWorkMode
XORQ AX, AX XORQ AX, AX
LFSR_UPDT(0) LFSR_UPDT(0)
SAVE_STATE() SAVE_STATE()
RESTORE_LFSR_0() RESTORE_LFSR_0()
@ -413,14 +463,17 @@ sse:
avx: avx:
NONLIN_FUN_AVX() NONLIN_FUN_AVX()
XORL R15, AX // (BRC_X3 xor W) as result
XORL BRC_X3, AX
MOVL AX, ret+8(FP) MOVL AX, ret+8(FP)
// LFSRWithWorkMode
XORQ AX, AX XORQ AX, AX
LFSR_UPDT(0) LFSR_UPDT(0)
SAVE_STATE() SAVE_STATE()
RESTORE_LFSR_0() RESTORE_LFSR_0()
VZEROUPPER
RET RET
#define ROUND_SSE(idx) \ #define ROUND_SSE(idx) \
@ -594,7 +647,6 @@ avxZucSingle:
RESTORE_LFSR_0() RESTORE_LFSR_0()
avxZucRet: avxZucRet:
SAVE_STATE() SAVE_STATE()
VZEROUPPER
RET RET
// func genKeyStreamRev32Asm(keyStream []byte, pState *zucState32) // func genKeyStreamRev32Asm(keyStream []byte, pState *zucState32)
@ -736,5 +788,4 @@ avxZucSingle:
RESTORE_LFSR_0() RESTORE_LFSR_0()
avxZucRet: avxZucRet:
SAVE_STATE() SAVE_STATE()
VZEROUPPER
RET RET

View File

@ -79,12 +79,12 @@ var zuc256_d = [3][16]byte{
type zucState32 struct { type zucState32 struct {
lfsr [16]uint32 // linear feedback shift register lfsr [16]uint32 // linear feedback shift register
r1 uint32 r1 uint32 // register of F
r2 uint32 r2 uint32 // register of F
x0 uint32 // Output X0 of the bit reorganization x0 uint32 // Output X0 of the bit reorganization
x1 uint32 // Output X1 of the bit reorganization x1 uint32 // Output X1 of the bit reorganization
x2 uint32 // Output X2 of the bit reorganization x2 uint32 // Output X2 of the bit reorganization
x3 uint32 // Output X3 of the bit reorganization x3 uint32 // Output X3 of the bit reorganization
} }
func (s *zucState32) bitReorganization() { func (s *zucState32) bitReorganization() {

View File

@ -8,11 +8,15 @@ import (
) )
var supportsAES = cpu.X86.HasAES || cpu.ARM64.HasAES var supportsAES = cpu.X86.HasAES || cpu.ARM64.HasAES
var useAVX = cpu.X86.HasAVX var useAVX = false //cpu.X86.HasAVX
// Generate single keyword, 4 bytes.
//
//go:noescape //go:noescape
func genKeywordAsm(s *zucState32) uint32 func genKeywordAsm(s *zucState32) uint32
// Generate multiple keywords, n*4 bytes.
//
//go:noescape //go:noescape
func genKeyStreamAsm(keyStream []uint32, pState *zucState32) func genKeyStreamAsm(keyStream []uint32, pState *zucState32)