mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-26 12:16:20 +08:00
ecdh: sm2 ECDH initial version
This commit is contained in:
parent
d1e4806e06
commit
3f9e1d5bd9
148
ecdh/ecdh.go
Normal file
148
ecdh/ecdh.go
Normal file
@ -0,0 +1,148 @@
|
||||
// Package ecdh implements Elliptic Curve Diffie-Hellman / SM2-MQV over
|
||||
// SM2 curve.
|
||||
package ecdh
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/subtle"
|
||||
"io"
|
||||
"sync"
|
||||
)
|
||||
|
||||
type Curve interface {
|
||||
// ECDH performs a ECDH exchange and returns the shared secret.
|
||||
//
|
||||
// For NIST curves, this performs ECDH as specified in SEC 1, Version 2.0,
|
||||
// Section 3.3.1, and returns the x-coordinate encoded according to SEC 1,
|
||||
// Version 2.0, Section 2.3.5. In particular, if the result is the point at
|
||||
// infinity, ECDH returns an error. (Note that for NIST curves, that's only
|
||||
// possible if the private key is the all-zero value.)
|
||||
//
|
||||
// For X25519, this performs ECDH as specified in RFC 7748, Section 6.1. If
|
||||
// the result is the all-zero value, ECDH returns an error.
|
||||
ECDH(local *PrivateKey, remote *PublicKey) ([]byte, error)
|
||||
|
||||
// SM2MQV performs a SM2 specific style ECMQV exchange and return the shared secret.
|
||||
//SM2MQV(sLocal, eLocal *PrivateKey, sRemote, eRemote *PublicKey) (*PublicKey, error)
|
||||
|
||||
// GenerateKey generates a new PrivateKey from rand.
|
||||
GenerateKey(rand io.Reader) (*PrivateKey, error)
|
||||
|
||||
// NewPrivateKey checks that key is valid and returns a PrivateKey.
|
||||
//
|
||||
// For NIST curves, this follows SEC 1, Version 2.0, Section 2.3.6, which
|
||||
// amounts to decoding the bytes as a fixed length big endian integer and
|
||||
// checking that the result is lower than the order of the curve. The zero
|
||||
// private key is also rejected, as the encoding of the corresponding public
|
||||
// key would be irregular.
|
||||
//
|
||||
// For X25519, this only checks the scalar length. Adversarially selected
|
||||
// private keys can cause ECDH to return an error.
|
||||
NewPrivateKey(key []byte) (*PrivateKey, error)
|
||||
|
||||
// NewPublicKey checks that key is valid and returns a PublicKey.
|
||||
//
|
||||
// For NIST curves, this decodes an uncompressed point according to SEC 1,
|
||||
// Version 2.0, Section 2.3.4. Compressed encodings and the point at
|
||||
// infinity are rejected.
|
||||
//
|
||||
// For X25519, this only checks the u-coordinate length. Adversarially
|
||||
// selected public keys can cause ECDH to return an error.
|
||||
NewPublicKey(key []byte) (*PublicKey, error)
|
||||
|
||||
// privateKeyToPublicKey converts a PrivateKey to a PublicKey. It's exposed
|
||||
// as the PrivateKey.PublicKey method.
|
||||
//
|
||||
// This method always succeeds: for X25519, it might output the all-zeroes
|
||||
// value (unlike the ECDH method); for NIST curves, it would only fail for
|
||||
// the zero private key, which is rejected by NewPrivateKey.
|
||||
//
|
||||
// The private method also allow us to expand the ECDH interface with more
|
||||
// methods in the future without breaking backwards compatibility.
|
||||
privateKeyToPublicKey(*PrivateKey) *PublicKey
|
||||
}
|
||||
|
||||
// PublicKey is an ECDH public key, usually a peer's ECDH share sent over the wire.
|
||||
type PublicKey struct {
|
||||
curve Curve
|
||||
publicKey []byte
|
||||
}
|
||||
|
||||
// Bytes returns a copy of the encoding of the public key.
|
||||
func (k *PublicKey) Bytes() []byte {
|
||||
// Copy the public key to a fixed size buffer that can get allocated on the
|
||||
// caller's stack after inlining.
|
||||
var buf [133]byte
|
||||
return append(buf[:0], k.publicKey...)
|
||||
}
|
||||
|
||||
// Equal returns whether x represents the same public key as k.
|
||||
//
|
||||
// Note that there can be equivalent public keys with different encodings which
|
||||
// would return false from this check but behave the same way as inputs to ECDH.
|
||||
//
|
||||
// This check is performed in constant time as long as the key types and their
|
||||
// curve match.
|
||||
func (k *PublicKey) Equal(x crypto.PublicKey) bool {
|
||||
xx, ok := x.(*PublicKey)
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
return k.curve == xx.curve &&
|
||||
subtle.ConstantTimeCompare(k.publicKey, xx.publicKey) == 1
|
||||
}
|
||||
|
||||
func (k *PublicKey) Curve() Curve {
|
||||
return k.curve
|
||||
}
|
||||
|
||||
// PrivateKey is an ECDH private key, usually kept secret.
|
||||
type PrivateKey struct {
|
||||
curve Curve
|
||||
privateKey []byte
|
||||
// publicKey is set under publicKeyOnce, to allow loading private keys with
|
||||
// NewPrivateKey without having to perform a scalar multiplication.
|
||||
publicKey *PublicKey
|
||||
publicKeyOnce sync.Once
|
||||
}
|
||||
|
||||
// Bytes returns a copy of the encoding of the private key.
|
||||
func (k *PrivateKey) Bytes() []byte {
|
||||
// Copy the private key to a fixed size buffer that can get allocated on the
|
||||
// caller's stack after inlining.
|
||||
var buf [66]byte
|
||||
return append(buf[:0], k.privateKey...)
|
||||
}
|
||||
|
||||
// Equal returns whether x represents the same private key as k.
|
||||
//
|
||||
// Note that there can be equivalent private keys with different encodings which
|
||||
// would return false from this check but behave the same way as inputs to ECDH.
|
||||
//
|
||||
// This check is performed in constant time as long as the key types and their
|
||||
// curve match.
|
||||
func (k *PrivateKey) Equal(x crypto.PrivateKey) bool {
|
||||
xx, ok := x.(*PrivateKey)
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
return k.curve == xx.curve &&
|
||||
subtle.ConstantTimeCompare(k.privateKey, xx.privateKey) == 1
|
||||
}
|
||||
|
||||
func (k *PrivateKey) Curve() Curve {
|
||||
return k.curve
|
||||
}
|
||||
|
||||
func (k *PrivateKey) PublicKey() *PublicKey {
|
||||
k.publicKeyOnce.Do(func() {
|
||||
k.publicKey = k.curve.privateKeyToPublicKey(k)
|
||||
})
|
||||
return k.publicKey
|
||||
}
|
||||
|
||||
// Public implements the implicit interface of all standard library private
|
||||
// keys. See the docs of crypto.PrivateKey.
|
||||
func (k *PrivateKey) Public() crypto.PublicKey {
|
||||
return k.PublicKey()
|
||||
}
|
160
ecdh/ecdh_test.go
Normal file
160
ecdh/ecdh_test.go
Normal file
@ -0,0 +1,160 @@
|
||||
package ecdh_test
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto"
|
||||
"crypto/cipher"
|
||||
"crypto/rand"
|
||||
"fmt"
|
||||
"io"
|
||||
"testing"
|
||||
|
||||
"github.com/emmansun/gmsm/ecdh"
|
||||
"golang.org/x/crypto/chacha20"
|
||||
)
|
||||
|
||||
// Check that PublicKey and PrivateKey implement the interfaces documented in
|
||||
// crypto.PublicKey and crypto.PrivateKey.
|
||||
var _ interface {
|
||||
Equal(x crypto.PublicKey) bool
|
||||
} = &ecdh.PublicKey{}
|
||||
var _ interface {
|
||||
Public() crypto.PublicKey
|
||||
Equal(x crypto.PrivateKey) bool
|
||||
} = &ecdh.PrivateKey{}
|
||||
|
||||
func TestECDH(t *testing.T) {
|
||||
aliceKey, err := ecdh.P256().GenerateKey(rand.Reader)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
bobKey, err := ecdh.P256().GenerateKey(rand.Reader)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
alicePubKey, err := ecdh.P256().NewPublicKey(aliceKey.PublicKey().Bytes())
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
if !bytes.Equal(aliceKey.PublicKey().Bytes(), alicePubKey.Bytes()) {
|
||||
t.Error("encoded and decoded public keys are different")
|
||||
}
|
||||
if !aliceKey.PublicKey().Equal(alicePubKey) {
|
||||
t.Error("encoded and decoded public keys are different")
|
||||
}
|
||||
|
||||
alicePrivKey, err := ecdh.P256().NewPrivateKey(aliceKey.Bytes())
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
if !bytes.Equal(aliceKey.Bytes(), alicePrivKey.Bytes()) {
|
||||
t.Error("encoded and decoded private keys are different")
|
||||
}
|
||||
if !aliceKey.Equal(alicePrivKey) {
|
||||
t.Error("encoded and decoded private keys are different")
|
||||
}
|
||||
|
||||
bobSecret, err := ecdh.P256().ECDH(bobKey, aliceKey.PublicKey())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
aliceSecret, err := ecdh.P256().ECDH(aliceKey, bobKey.PublicKey())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !bytes.Equal(bobSecret, aliceSecret) {
|
||||
t.Error("two ECDH computations came out different")
|
||||
}
|
||||
}
|
||||
|
||||
type countingReader struct {
|
||||
r io.Reader
|
||||
n int
|
||||
}
|
||||
|
||||
func (r *countingReader) Read(p []byte) (int, error) {
|
||||
n, err := r.r.Read(p)
|
||||
r.n += n
|
||||
return n, err
|
||||
}
|
||||
|
||||
func TestGenerateKey(t *testing.T) {
|
||||
r := &countingReader{r: rand.Reader}
|
||||
k, err := ecdh.P256().GenerateKey(r)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
// GenerateKey does rejection sampling. If the masking works correctly,
|
||||
// the probability of a rejection is 1-ord(G)/2^ceil(log2(ord(G))),
|
||||
// which for all curves is small enough (at most 2^-32, for P-256) that
|
||||
// a bit flip is more likely to make this test fail than bad luck.
|
||||
// Account for the extra MaybeReadByte byte, too.
|
||||
if got, expected := r.n, len(k.Bytes())+1; got > expected {
|
||||
t.Errorf("expected GenerateKey to consume at most %v bytes, got %v", expected, got)
|
||||
}
|
||||
}
|
||||
|
||||
func TestString(t *testing.T) {
|
||||
s := fmt.Sprintf("%s", ecdh.P256())
|
||||
if s != "sm2p256v1" {
|
||||
t.Errorf("unexpected Curve string encoding: %q", s)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkECDH(b *testing.B) {
|
||||
benchmarkAllCurves(b, func(b *testing.B, curve ecdh.Curve) {
|
||||
c, err := chacha20.NewUnauthenticatedCipher(make([]byte, 32), make([]byte, 12))
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
rand := cipher.StreamReader{
|
||||
S: c, R: zeroReader,
|
||||
}
|
||||
|
||||
peerKey, err := curve.GenerateKey(rand)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
peerShare := peerKey.PublicKey().Bytes()
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
|
||||
var allocationsSink byte
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
key, err := curve.GenerateKey(rand)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
share := key.PublicKey().Bytes()
|
||||
peerPubKey, err := curve.NewPublicKey(peerShare)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
secret, err := curve.ECDH(key, peerPubKey)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
allocationsSink ^= secret[0] ^ share[0]
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func benchmarkAllCurves(b *testing.B, f func(b *testing.B, curve ecdh.Curve)) {
|
||||
b.Run("SM2P256", func(b *testing.B) { f(b, ecdh.P256()) })
|
||||
}
|
||||
|
||||
type zr struct{}
|
||||
|
||||
// Read replaces the contents of dst with zeros. It is safe for concurrent use.
|
||||
func (zr) Read(dst []byte) (n int, err error) {
|
||||
for i := range dst {
|
||||
dst[i] = 0
|
||||
}
|
||||
return len(dst), nil
|
||||
}
|
||||
|
||||
var zeroReader = zr{}
|
153
ecdh/sm2ec.go
Normal file
153
ecdh/sm2ec.go
Normal file
@ -0,0 +1,153 @@
|
||||
package ecdh
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"io"
|
||||
"math/bits"
|
||||
|
||||
"github.com/emmansun/gmsm/internal/randutil"
|
||||
sm2ec "github.com/emmansun/gmsm/internal/sm2ec"
|
||||
"github.com/emmansun/gmsm/internal/subtle"
|
||||
)
|
||||
|
||||
type sm2Curve struct {
|
||||
name string
|
||||
newPoint func() *sm2ec.SM2P256Point
|
||||
scalarOrder []byte
|
||||
}
|
||||
|
||||
func (c *sm2Curve) String() string {
|
||||
return c.name
|
||||
}
|
||||
|
||||
func (c *sm2Curve) GenerateKey(rand io.Reader) (*PrivateKey, error) {
|
||||
key := make([]byte, len(c.scalarOrder))
|
||||
randutil.MaybeReadByte(rand)
|
||||
|
||||
for {
|
||||
if _, err := io.ReadFull(rand, key); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// In tests, rand will return all zeros and NewPrivateKey will reject
|
||||
// the zero key as it generates the identity as a public key. This also
|
||||
// makes this function consistent with crypto/elliptic.GenerateKey.
|
||||
key[1] ^= 0x42
|
||||
|
||||
k, err := c.NewPrivateKey(key)
|
||||
if err == errInvalidPrivateKey {
|
||||
continue
|
||||
}
|
||||
return k, err
|
||||
}
|
||||
}
|
||||
|
||||
func (c *sm2Curve) NewPrivateKey(key []byte) (*PrivateKey, error) {
|
||||
if len(key) != len(c.scalarOrder) {
|
||||
return nil, errors.New("ecdh: invalid private key size")
|
||||
}
|
||||
if subtle.ConstantTimeAllZero(key) || !isLess(key, c.scalarOrder) {
|
||||
return nil, errInvalidPrivateKey
|
||||
}
|
||||
return &PrivateKey{
|
||||
curve: c,
|
||||
privateKey: append([]byte{}, key...),
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (c *sm2Curve) privateKeyToPublicKey(key *PrivateKey) *PublicKey {
|
||||
if key.curve != c {
|
||||
panic("ecdh: internal error: converting the wrong key type")
|
||||
}
|
||||
p, err := c.newPoint().ScalarBaseMult(key.privateKey)
|
||||
if err != nil {
|
||||
// This is unreachable because the only error condition of
|
||||
// ScalarBaseMult is if the input is not the right size.
|
||||
panic("ecdh: internal error: sm2ec ScalarBaseMult failed for a fixed-size input")
|
||||
}
|
||||
publicKey := p.Bytes()
|
||||
if len(publicKey) == 1 {
|
||||
// The encoding of the identity is a single 0x00 byte. This is
|
||||
// unreachable because the only scalar that generates the identity is
|
||||
// zero, which is rejected by NewPrivateKey.
|
||||
panic("ecdh: internal error: sm2ec ScalarBaseMult returned the identity")
|
||||
}
|
||||
return &PublicKey{
|
||||
curve: key.curve,
|
||||
publicKey: publicKey,
|
||||
}
|
||||
}
|
||||
|
||||
func (c *sm2Curve) NewPublicKey(key []byte) (*PublicKey, error) {
|
||||
// Reject the point at infinity and compressed encodings.
|
||||
if len(key) == 0 || key[0] != 4 {
|
||||
return nil, errors.New("ecdh: invalid public key")
|
||||
}
|
||||
// SetBytes also checks that the point is on the curve.
|
||||
if _, err := c.newPoint().SetBytes(key); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &PublicKey{
|
||||
curve: c,
|
||||
publicKey: append([]byte{}, key...),
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (c *sm2Curve) ECDH(local *PrivateKey, remote *PublicKey) ([]byte, error) {
|
||||
p, err := c.newPoint().SetBytes(remote.publicKey)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if _, err := p.ScalarMult(p, local.privateKey); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// BytesX will return an error if p is the point at infinity.
|
||||
return p.BytesX()
|
||||
}
|
||||
|
||||
// P256 returns a Curve which implements SM2, also known as sm2p256v1
|
||||
//
|
||||
// Multiple invocations of this function will return the same value, so it can
|
||||
// be used for equality checks and switch statements.
|
||||
func P256() Curve { return sm2P256 }
|
||||
|
||||
var sm2P256 = &sm2Curve{
|
||||
name: "sm2p256v1",
|
||||
newPoint: sm2ec.NewSM2P256Point,
|
||||
scalarOrder: sm2P256Order,
|
||||
}
|
||||
|
||||
var sm2P256Order = []byte{0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x72, 0x03, 0xdf, 0x6b, 0x21, 0xc6, 0x05, 0x2b, 0x53, 0xbb, 0xf4, 0x09, 0x39, 0xd5, 0x41, 0x23}
|
||||
|
||||
// isLess returns whether a < b, where a and b are big-endian buffers of the
|
||||
// same length and shorter than 72 bytes.
|
||||
func isLess(a, b []byte) bool {
|
||||
if len(a) != len(b) {
|
||||
panic("ecdh: internal error: mismatched isLess inputs")
|
||||
}
|
||||
|
||||
// Copy the values into a fixed-size preallocated little-endian buffer.
|
||||
// 72 bytes is enough for every scalar in this package, and having a fixed
|
||||
// size lets us avoid heap allocations.
|
||||
if len(a) > 72 {
|
||||
panic("ecdh: internal error: isLess input too large")
|
||||
}
|
||||
bufA, bufB := make([]byte, 72), make([]byte, 72)
|
||||
for i := range a {
|
||||
bufA[i], bufB[i] = a[len(a)-i-1], b[len(b)-i-1]
|
||||
}
|
||||
|
||||
// Perform a subtraction with borrow.
|
||||
var borrow uint64
|
||||
for i := 0; i < len(bufA); i += 8 {
|
||||
limbA, limbB := binary.LittleEndian.Uint64(bufA[i:]), binary.LittleEndian.Uint64(bufB[i:])
|
||||
_, borrow = bits.Sub64(limbA, limbB, borrow)
|
||||
}
|
||||
|
||||
// If there is a borrow at the end of the operation, then a < b.
|
||||
return borrow == 1
|
||||
}
|
||||
|
||||
var errInvalidPrivateKey = errors.New("ecdh: invalid private key")
|
Loading…
x
Reference in New Issue
Block a user