SM2: key exchange

This commit is contained in:
Sun Yimin 2022-06-17 16:58:26 +08:00 committed by GitHub
parent 21b8f82a6e
commit 23914a86c3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 299 additions and 3 deletions

255
sm2/sm2_keyexchange.go Normal file
View File

@ -0,0 +1,255 @@
package sm2
import (
"crypto/ecdsa"
goSubtle "crypto/subtle"
"errors"
"io"
"math/big"
"github.com/emmansun/gmsm/sm3"
)
// Point represent point on curve
type Point struct {
X *big.Int
Y *big.Int
}
// KeyExchange key exchange struct, include internal stat in whole key exchange flow.
// Initiator's flow will be: NewKeyExchange -> InitKeyExchange -> transmission -> ConfirmResponder
// Responder's flow will be: NewKeyExchange -> waiting ... -> RepondKeyExchange -> transmission -> ConfirmInitiator
type KeyExchange struct {
genSignature bool // control the optional sign/verify step triggered by responsder
keyLength int // key length
privateKey *PrivateKey // owner's encryption private key
uid []byte // owner uid
peerUID []byte // peer uid
peerPub *ecdsa.PublicKey // peer public key
r *big.Int // random which will be used to compute secret
secret Point // generated secret which will be passed to peer
peerSecret Point // received peer's secret
w2 *big.Int // internal state which will be used when compute the key and signature
w2Minus1 *big.Int // internal state which will be used when compute the key and signature
v Point // internal state which will be used when compute the key and signature
key []byte // key will be used after key agreement
}
// GetKey return key after key agreement
func (ke *KeyExchange) GetKey() []byte {
return ke.key
}
// NewKeyExchange create one new KeyExchange object
func NewKeyExchange(priv *PrivateKey, peerPub *ecdsa.PublicKey, uid, peerUID []byte, keyLen int, genSignature bool) *KeyExchange {
ke := &KeyExchange{}
ke.genSignature = genSignature
ke.peerPub = peerPub
ke.keyLength = keyLen
ke.privateKey = priv
ke.uid = uid
ke.peerUID = peerUID
w := (priv.Params().N.BitLen()+1)/2 - 1
x2 := big.NewInt(2)
ke.w2 = x2
x2.Lsh(x2, uint(w))
x2minus1 := (&big.Int{}).Sub(x2, big.NewInt(1))
ke.w2Minus1 = x2minus1
return ke
}
func initKeyExchange(ke *KeyExchange, r *big.Int) {
ke.secret.X, ke.secret.Y = ke.privateKey.ScalarBaseMult(r.Bytes())
ke.r = r
}
// InitKeyExchange generate random with responder uid, for initiator's step A1-A3
func (ke *KeyExchange) InitKeyExchange(rand io.Reader) (*Point, error) {
r, err := randFieldElement(ke.privateKey, rand)
if err != nil {
return nil, err
}
initKeyExchange(ke, r)
return &ke.secret, nil
}
func respondKeyExchange(ke *KeyExchange, r *big.Int, rA *Point) (*Point, []byte, error) {
ke.secret.X, ke.secret.Y = ke.privateKey.ScalarBaseMult(r.Bytes())
ke.r = r
t := (&big.Int{}).And(ke.w2Minus1, ke.secret.X)
t.Add(ke.w2, t)
t.Mul(t, ke.r)
t.Add(t, ke.privateKey.D)
t.Mod(t, ke.privateKey.Params().N)
x1 := (&big.Int{}).And(ke.w2Minus1, ke.peerSecret.X)
x1.Add(ke.w2, x1)
x3, y3 := ke.privateKey.ScalarMult(ke.peerSecret.X, ke.peerSecret.Y, x1.Bytes())
x3, y3 = ke.privateKey.Add(ke.peerPub.X, ke.peerPub.Y, x3, y3)
ke.v.X, ke.v.Y = ke.privateKey.ScalarMult(x3, y3, t.Bytes())
if ke.v.X.Sign() == 0 && ke.v.Y.Sign() == 0 {
return nil, nil, errors.New("sm2: key exchange fail")
}
var buffer []byte
zA, err := calculateZA(ke.peerPub, ke.peerUID)
if err != nil {
return nil, nil, err
}
zB, err := calculateZA(&ke.privateKey.PublicKey, ke.uid)
if err != nil {
return nil, nil, err
}
buffer = append(buffer, toBytes(ke.privateKey, ke.v.X)...)
buffer = append(buffer, toBytes(ke.privateKey, ke.v.Y)...)
buffer = append(buffer, zA...)
buffer = append(buffer, zB...)
key, _ := sm3.Kdf(buffer, ke.keyLength)
ke.key = key
if !ke.genSignature {
return &ke.secret, nil, nil
}
hash := sm3.New()
hash.Write(toBytes(ke.privateKey, ke.v.X))
hash.Write(zA)
hash.Write(zB)
hash.Write(toBytes(ke.privateKey, ke.peerSecret.X))
hash.Write(toBytes(ke.privateKey, ke.peerSecret.Y))
hash.Write(toBytes(ke.privateKey, ke.secret.X))
hash.Write(toBytes(ke.privateKey, ke.secret.Y))
buffer = hash.Sum(nil)
hash.Reset()
hash.Write([]byte{0x02})
hash.Write(toBytes(ke.privateKey, ke.v.Y))
hash.Write(buffer)
buffer = hash.Sum(nil)
return &ke.secret, buffer, nil
}
// RepondKeyExchange when responder receive rA, for responder's step B1-B8
func (ke *KeyExchange) RepondKeyExchange(rand io.Reader, rA *Point) (*Point, []byte, error) {
if !ke.privateKey.IsOnCurve(rA.X, rA.Y) {
return nil, nil, errors.New("sm2: received invalid random from initiator")
}
ke.peerSecret = *rA
r, err := randFieldElement(ke.privateKey, rand)
if err != nil {
return nil, nil, err
}
return respondKeyExchange(ke, r, rA)
}
// ConfirmResponder for initiator's step A4-A10
func (ke *KeyExchange) ConfirmResponder(rB *Point, sB []byte) ([]byte, error) {
if !ke.privateKey.IsOnCurve(rB.X, rB.Y) {
return nil, errors.New("sm2: received invalid random from responder")
}
hash := sm3.New()
ke.peerSecret = *rB
t := (&big.Int{}).And(ke.w2Minus1, ke.secret.X)
t.Add(ke.w2, t)
t.Mul(t, ke.r)
t.Add(t, ke.privateKey.D)
t.Mod(t, ke.privateKey.Params().N)
x2 := (&big.Int{}).And(ke.w2Minus1, ke.peerSecret.X)
x2.Add(ke.w2, x2)
x3, y3 := ke.privateKey.ScalarMult(ke.peerSecret.X, ke.peerSecret.Y, x2.Bytes())
x3, y3 = ke.privateKey.Add(ke.peerPub.X, ke.peerPub.Y, x3, y3)
ke.v.X, ke.v.Y = ke.privateKey.ScalarMult(x3, y3, t.Bytes())
if ke.v.X.Sign() == 0 && ke.v.Y.Sign() == 0 {
return nil, errors.New("sm2: key exchange fail")
}
var buffer []byte
zA, err := calculateZA(&ke.privateKey.PublicKey, ke.uid)
if err != nil {
return nil, err
}
zB, err := calculateZA(ke.peerPub, ke.peerUID)
if err != nil {
return nil, err
}
buffer = append(buffer, toBytes(ke.privateKey, ke.v.X)...)
buffer = append(buffer, toBytes(ke.privateKey, ke.v.Y)...)
buffer = append(buffer, zA...)
buffer = append(buffer, zB...)
key, _ := sm3.Kdf(buffer, ke.keyLength)
ke.key = key
if len(sB) > 0 {
hash.Write(toBytes(ke.privateKey, ke.v.X))
hash.Write(zA)
hash.Write(zB)
hash.Write(toBytes(ke.privateKey, ke.secret.X))
hash.Write(toBytes(ke.privateKey, ke.secret.Y))
hash.Write(toBytes(ke.privateKey, ke.peerSecret.X))
hash.Write(toBytes(ke.privateKey, ke.peerSecret.Y))
buffer = hash.Sum(nil)
hash.Reset()
hash.Write([]byte{0x02})
hash.Write(toBytes(ke.privateKey, ke.v.Y))
hash.Write(buffer)
buffer = hash.Sum(nil)
hash.Reset()
if goSubtle.ConstantTimeCompare(buffer, sB) != 1 {
return nil, errors.New("sm2: verify responder's signature fail")
}
}
hash.Write(toBytes(ke.privateKey, ke.v.X))
hash.Write(zA)
hash.Write(zB)
hash.Write(toBytes(ke.privateKey, ke.secret.X))
hash.Write(toBytes(ke.privateKey, ke.secret.Y))
hash.Write(toBytes(ke.privateKey, ke.peerSecret.X))
hash.Write(toBytes(ke.privateKey, ke.peerSecret.Y))
buffer = hash.Sum(nil)
hash.Reset()
hash.Write([]byte{0x03})
hash.Write(toBytes(ke.privateKey, ke.v.Y))
hash.Write(buffer)
buffer = hash.Sum(nil)
return buffer, nil
}
// ConfirmInitiator for responder's step B10
func (ke *KeyExchange) ConfirmInitiator(s1 []byte) error {
hash := sm3.New()
var buffer []byte
zB, err := calculateZA(&ke.privateKey.PublicKey, ke.uid)
if err != nil {
return err
}
zA, err := calculateZA(ke.peerPub, ke.peerUID)
if err != nil {
return err
}
hash.Write(toBytes(ke.privateKey, ke.v.X))
hash.Write(zA)
hash.Write(zB)
hash.Write(toBytes(ke.privateKey, ke.peerSecret.X))
hash.Write(toBytes(ke.privateKey, ke.peerSecret.Y))
hash.Write(toBytes(ke.privateKey, ke.secret.X))
hash.Write(toBytes(ke.privateKey, ke.secret.Y))
buffer = hash.Sum(nil)
hash.Reset()
hash.Write([]byte{0x03})
hash.Write(toBytes(ke.privateKey, ke.v.Y))
hash.Write(buffer)
buffer = hash.Sum(nil)
if goSubtle.ConstantTimeCompare(buffer, s1) != 1 {
return errors.New("sm2: verify initiator's signature fail")
}
return nil
}

View File

@ -0,0 +1,38 @@
package sm2
import (
"crypto/rand"
"encoding/hex"
"testing"
)
func TestKeyExchangeSample(t *testing.T) {
priv1, _ := GenerateKey(rand.Reader)
priv2, _ := GenerateKey(rand.Reader)
initiator := NewKeyExchange(priv1, &priv2.PublicKey, []byte("Alice"), []byte("Bob"), 32, true)
responsder := NewKeyExchange(priv2, &priv1.PublicKey, []byte("Bob"), []byte("Alice"), 32, true)
rA, err := initiator.InitKeyExchange(rand.Reader)
if err != nil {
t.Fatal(err)
}
rB, s2, err := responsder.RepondKeyExchange(rand.Reader, rA)
if err != nil {
t.Fatal(err)
}
s1, err := initiator.ConfirmResponder(rB, s2)
if err != nil {
t.Fatal(err)
}
err = responsder.ConfirmInitiator(s1)
if err != nil {
t.Fatal(err)
}
if hex.EncodeToString(initiator.key) != hex.EncodeToString(responsder.key) {
t.Errorf("got different key")
}
}

View File

@ -549,7 +549,7 @@ func (ke *KeyExchange) InitKeyExchange(rand io.Reader, hid byte) (*bn256.G1, err
func respondKeyExchange(ke *KeyExchange, hid byte, r *big.Int, rA *bn256.G1) (*bn256.G1, []byte, error) {
if !rA.IsOnCurve() {
return nil, nil, errors.New("SM9: received invalid random from initiator")
return nil, nil, errors.New("sm9: received invalid random from initiator")
}
ke.peerSecret = rA
pubA := ke.privateKey.GenerateUserPublicKey(ke.peerUID, hid)
@ -605,6 +605,9 @@ func (ke *KeyExchange) RepondKeyExchange(rand io.Reader, hid byte, rA *bn256.G1)
// ConfirmResponder for initiator's step A5-A7
func (ke *KeyExchange) ConfirmResponder(rB *bn256.G1, sB []byte) ([]byte, error) {
if !rB.IsOnCurve() {
return nil, errors.New("sm9: received invalid random from responder")
}
hash := sm3.New()
// step 5
ke.peerSecret = rB
@ -630,7 +633,7 @@ func (ke *KeyExchange) ConfirmResponder(rB *bn256.G1, sB []byte) ([]byte, error)
signature := hash.Sum(nil)
hash.Reset()
if goSubtle.ConstantTimeCompare(signature, sB) != 1 {
return nil, errors.New("sm9: verify signature fail")
return nil, errors.New("sm9: verify responder's signature fail")
}
}
buffer = append(buffer, ke.uid...)
@ -668,7 +671,7 @@ func (ke *KeyExchange) ConfirmInitiator(s1 []byte) error {
hash.Write(buffer)
buffer = hash.Sum(nil)
if goSubtle.ConstantTimeCompare(buffer, s1) != 1 {
return errors.New("sm9: verify signature fail")
return errors.New("sm9: verify initiator's signature fail")
}
return nil
}