doc: 增加与KMS集成这一节及其它

This commit is contained in:
Sun Yimin 2023-12-12 17:32:48 +08:00 committed by GitHub
parent 015ca1b6b2
commit 2187bea0d9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -7,7 +7,12 @@
# 概述
SM4分组密码算法其地位类似NIST中的AES分组密码算法密钥长度128位16字节分组大小也是128位16字节。在本软件库中SM4的实现与Go语言中的AES实现一致也实现了```cipher.Block```接口所以所有Go语言中实现的工作模式CBC/GCM/CFB/OFB/CTR都能与SM4组合使用。
# 工作模式
# [工作模式](https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation)
Go语言实现的工作模式主要有三类
* 基于分组的工作模式 ```cipher.BlockMode```譬如CBC。
* 带有关联数据的认证加密工作模式```cipher.AEAD```譬如GCM。
* 流加密工作模式```cipher.Stream```譬如CTR、CFB、OFB。
在实际加解密操作中,我们一般不会直接使用```cipher.Block```必须结合分组密码算法的工作模式使用。除了Go语言自带的工作模式CBC/GCM/CFB/OFB/CTR本软件库也实现了下列工作模式
* ECB - 电码本模式
* BC - 分组链接模式
@ -19,7 +24,7 @@ SM4分组密码算法其地位类似NIST中的AES分组密码算法密钥
其中ECB/BC/HCTR/XTS/OFBNLF是《GB/T 17964-2021 信息安全技术 分组密码算法的工作模式》列出的工作模式。BC/OFBNLF模式是商密中的遗留工作模式**不建议**在新的应用中使用。XTS/HCTR模式适用于对磁盘加密其中HCTR模式是《GB/T 17964-2021 信息安全技术 分组密码算法的工作模式》最新引入的HCTR模式最近业界研究比较多也指出了原论文中的BugsOn modern processors HCTR [WFW05](https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288) is one of the most efficient constructions for building a tweakable super-pseudorandom permutation. However, a bug in the specification and another in Chakraborty and Nandis security proof [CN08](https://www.iacr.org/cryptodb/archive/2008/FSE/paper/15611.pdf) invalidate the claimed security bound.
不知道这个不足是否会影响到这个工作模式的采用。很奇怪《GB/T 17964-2021 信息安全技术 分组密码算法的工作模式》为何没有纳入GCM工作模式难道是版权问题
引入CCM模式只是为了有些标准还用到该模式。ECB模式也不建议单独使用。
本软件库引入CCM模式只是为了有些标准还用到该模式。ECB模式也不建议单独使用。
目前本软件库的SM4针对ECB/CBC/GCM/XTS工作模式进行了绑定组合性能优化暂时没有计划使用汇编优化HCTR模式HCTR模式可以采用和GCM类似的方法进行汇编优化
@ -49,8 +54,144 @@ SM4分组密码算法其地位类似NIST中的AES分组密码算法密钥
* 使用预定义的ASN.1结构
* 和密文简单拼接譬如CBC工作模式前面16字节IV后面ciphertextGCM模式使用默认Tag长度和Nonce长度前面12字节Nonce后面ciphertext。
至于要将二进制转为文本传输、存储编个码就行标准base64 / URL base64 / HEX事先协调、定义好就可以了。
至于要将二进制转为文本传输、存储编个码就行标准base64 / URL base64 / HEX事先协调、定义好就可以了。这里顺便推荐一下[性能更好的BASE64实现](https://github.com/emmansun/base64)。
# API文档及示例
这里只列出GCM/CBC的例子其余请参考[API Document](https://godoc.org/github.com/emmansun/gmsm)。
## GCM示例
```go
func Example_encryptGCM() {
// Load your secret key from a safe place and reuse it across multiple
// Seal/Open calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
plaintext := []byte("exampleplaintext")
block, err := sm4.NewCipher(key)
if err != nil {
panic(err.Error())
}
// Never use more than 2^32 random nonces with a given key because of the risk of a repeat.
nonce := make([]byte, 12)
if _, err := io.ReadFull(rand.Reader, nonce); err != nil {
panic(err.Error())
}
sm4gcm, err := cipher.NewGCM(block)
if err != nil {
panic(err.Error())
}
// You can encode the nonce and ciphertext with your own scheme
ciphertext := sm4gcm.Seal(nil, nonce, plaintext, nil)
fmt.Printf("%x %x\n", nonce, ciphertext)
}
func Example_decryptGCM() {
// Load your secret key from a safe place and reuse it across multiple
// Seal/Open calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
// You can decode the nonce and ciphertext with your encoding scheme
ciphertext, _ := hex.DecodeString("b7fdece1c6b3dce9cc386e8bc93df0ce496df789166229f14b973b694a4a23c3")
nonce, _ := hex.DecodeString("07d168e0517656ab7131f495")
block, err := sm4.NewCipher(key)
if err != nil {
panic(err.Error())
}
sm4gcm, err := cipher.NewGCM(block)
if err != nil {
panic(err.Error())
}
plaintext, err := sm4gcm.Open(nil, nonce, ciphertext, nil)
if err != nil {
panic(err.Error())
}
fmt.Printf("%s\n", plaintext)
// Output: exampleplaintext
}
```
## CBC示例
```go
func Example_encryptCBC() {
// Load your secret key from a safe place and reuse it across multiple
// NewCipher calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
plaintext := []byte("sm4 exampleplaintext")
block, err := sm4.NewCipher(key)
if err != nil {
panic(err)
}
// CBC mode works on blocks so plaintexts may need to be padded to the
// next whole block. For an example of such padding, see
// https://tools.ietf.org/html/rfc5246#section-6.2.3.2.
pkcs7 := padding.NewPKCS7Padding(sm4.BlockSize)
paddedPlainText := pkcs7.Pad(plaintext)
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, sm4.BlockSize+len(paddedPlainText))
iv := ciphertext[:sm4.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(ciphertext[sm4.BlockSize:], paddedPlainText)
fmt.Printf("%x\n", ciphertext)
}
func Example_decryptCBC() {
// Load your secret key from a safe place and reuse it across multiple
// NewCipher calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
ciphertext, _ := hex.DecodeString("4d5a1486bfda1b34447afd5bb852e77a867cc6b726a8a0e0ef9b2c21fffc3a30b42acf504628f65cb3fba339101c98ff")
block, err := sm4.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
if len(ciphertext) < sm4.BlockSize {
panic("ciphertext too short")
}
iv := ciphertext[:sm4.BlockSize]
ciphertext = ciphertext[sm4.BlockSize:]
mode := cipher.NewCBCDecrypter(block, iv)
// CryptBlocks can work in-place if the two arguments are the same.
mode.CryptBlocks(ciphertext, ciphertext)
// Unpad plaintext
pkcs7 := padding.NewPKCS7Padding(sm4.BlockSize)
ciphertext, err = pkcs7.Unpad(ciphertext)
if err != nil {
panic(err)
}
fmt.Printf("%s\n", ciphertext)
// Output: sm4 exampleplaintext
}
```
# 性能
SM4分组密码算法的软件高效实现不算CPU指令支持的话已知有如下几种方法
* S盒和L转换预计算
@ -60,6 +201,15 @@ SM4分组密码算法的软件高效实现不算CPU指令支持的话
当然这些与有CPU指令支持的AES算法相比性能差距依然偏大要是工作模式不支持并行差距就更巨大了。
# API文档及示例
详见[API Document](https://godoc.org/github.com/emmansun/gmsm)。
# 与KMS集成
可能您会说如果我在KMS中创建了一个SM4对称密钥就不需要本地加解密了这话很对不过有种场景会用到
* 在KMS中只创建非对称密钥KEK
* 对称加解密在本地进行;
* 对称加密密钥,或者称为数据密钥(DEK/CEK)可以在本地通过安全伪随机数函数生成也可以通过KMS的Data Key API生成如果有这类API的话用Data Key API的话会有DEK/CEK明文传输问题毕竟KMS需要把DEK/CEK的密文/明文同时返回。
这种加密方案有什么优点呢?
* KMS API通常都会限流譬如200次/秒通过把对称加解密放在本地进行可以有效减少KMS交互。
* 减少网络带宽占用。
* 避免明文数据的网络传输。
当然前提是用于本地对称加解密的SM4分组密码算法和选用的工作模式性能可以满足需求。