gmsm/internal/sm2ec/fiat/sm2p256_invert.go

95 lines
2.1 KiB
Go
Raw Normal View History

2022-06-20 11:15:09 +08:00
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by addchain. DO NOT EDIT.
package fiat
// Invert sets e = 1/x, and returns e.
//
// If x == 0, Invert returns e = 0.
func (e *SM2P256Element) Invert(x *SM2P256Element) *SM2P256Element {
// Inversion is implemented as exponentiation with exponent p 2.
// The sequence of 14 multiplications and 255 squarings is derived from the
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
//
// _10 = 2*1
// _11 = 1 + _10
// _110 = 2*_11
// _111 = 1 + _110
// _111000 = _111 << 3
// _111111 = _111 + _111000
// _1111110 = 2*_111111
// _1111111 = 1 + _1111110
// x12 = _1111110 << 5 + _111111
// x24 = x12 << 12 + x12
// x31 = x24 << 7 + _1111111
// i39 = x31 << 2
// i68 = i39 << 29
// x62 = x31 + i68
// i71 = i68 << 2
// x64 = i39 + i71 + _11
// i265 = ((i71 << 32 + x64) << 64 + x64) << 94
// return (x62 + i265) << 2 + 1
//
var z = new(SM2P256Element).Set(e)
var t0 = new(SM2P256Element)
var t1 = new(SM2P256Element)
var t2 = new(SM2P256Element)
z.Square(x)
t0.Mul(x, z)
z.Square(t0)
z.Mul(x, z)
t1.Square(z)
for s := 1; s < 3; s++ {
t1.Square(t1)
}
t1.Mul(z, t1)
t2.Square(t1)
z.Mul(x, t2)
for s := 0; s < 5; s++ {
t2.Square(t2)
}
t1.Mul(t1, t2)
t2.Square(t1)
for s := 1; s < 12; s++ {
t2.Square(t2)
}
t1.Mul(t1, t2)
for s := 0; s < 7; s++ {
t1.Square(t1)
}
z.Mul(z, t1)
t2.Square(z)
for s := 1; s < 2; s++ {
t2.Square(t2)
}
t1.Square(t2)
for s := 1; s < 29; s++ {
t1.Square(t1)
}
z.Mul(z, t1)
for s := 0; s < 2; s++ {
t1.Square(t1)
}
t2.Mul(t2, t1)
t0.Mul(t0, t2)
for s := 0; s < 32; s++ {
t1.Square(t1)
}
t1.Mul(t0, t1)
for s := 0; s < 64; s++ {
t1.Square(t1)
}
t0.Mul(t0, t1)
for s := 0; s < 94; s++ {
t0.Square(t0)
}
z.Mul(z, t0)
for s := 0; s < 2; s++ {
z.Square(z)
}
z.Mul(x, z)
return e.Set(z)
}