gmsm/sm9/bn256/g2.go

367 lines
9.3 KiB
Go
Raw Normal View History

2022-07-15 16:42:39 +08:00
package bn256
import (
"errors"
"io"
"math/big"
"sync"
)
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
p *twistPoint
}
// Gen2 is the generator of G2.
2022-07-15 16:42:39 +08:00
var Gen2 = &G2{twistGen}
var g2GeneratorTable *[32 * 2]twistPointTable
var g2GeneratorTableOnce sync.Once
func (g *G2) generatorTable() *[32 * 2]twistPointTable {
g2GeneratorTableOnce.Do(func() {
g2GeneratorTable = new([32 * 2]twistPointTable)
base := NewTwistGenerator()
for i := 0; i < 32*2; i++ {
g2GeneratorTable[i][0] = &twistPoint{}
g2GeneratorTable[i][0].Set(base)
g2GeneratorTable[i][1] = &twistPoint{}
g2GeneratorTable[i][1].Double(g2GeneratorTable[i][0])
g2GeneratorTable[i][2] = &twistPoint{}
g2GeneratorTable[i][2].Add(g2GeneratorTable[i][1], base)
g2GeneratorTable[i][3] = &twistPoint{}
g2GeneratorTable[i][3].Double(g2GeneratorTable[i][1])
g2GeneratorTable[i][4] = &twistPoint{}
g2GeneratorTable[i][4].Add(g2GeneratorTable[i][3], base)
g2GeneratorTable[i][5] = &twistPoint{}
g2GeneratorTable[i][5].Double(g2GeneratorTable[i][2])
g2GeneratorTable[i][6] = &twistPoint{}
g2GeneratorTable[i][6].Add(g2GeneratorTable[i][5], base)
g2GeneratorTable[i][7] = &twistPoint{}
g2GeneratorTable[i][7].Double(g2GeneratorTable[i][3])
g2GeneratorTable[i][8] = &twistPoint{}
g2GeneratorTable[i][8].Add(g2GeneratorTable[i][7], base)
g2GeneratorTable[i][9] = &twistPoint{}
g2GeneratorTable[i][9].Double(g2GeneratorTable[i][4])
g2GeneratorTable[i][10] = &twistPoint{}
g2GeneratorTable[i][10].Add(g2GeneratorTable[i][9], base)
g2GeneratorTable[i][11] = &twistPoint{}
g2GeneratorTable[i][11].Double(g2GeneratorTable[i][5])
g2GeneratorTable[i][12] = &twistPoint{}
g2GeneratorTable[i][12].Add(g2GeneratorTable[i][11], base)
g2GeneratorTable[i][13] = &twistPoint{}
g2GeneratorTable[i][13].Double(g2GeneratorTable[i][6])
g2GeneratorTable[i][14] = &twistPoint{}
g2GeneratorTable[i][14].Add(g2GeneratorTable[i][13], base)
2022-07-15 16:42:39 +08:00
base.Double(base)
base.Double(base)
base.Double(base)
base.Double(base)
}
})
return g2GeneratorTable
}
// RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r.
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
k, err := randomK(r)
if err != nil {
return nil, nil, err
}
2022-11-25 10:11:46 +08:00
g2, err := new(G2).ScalarBaseMult(NormalizeScalar(k.Bytes()))
return k, g2, err
2022-07-15 16:42:39 +08:00
}
func (e *G2) String() string {
return "sm9.G2" + e.p.String()
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and then
// returns out.
2022-11-25 10:11:46 +08:00
func (e *G2) ScalarBaseMult(scalar []byte) (*G2, error) {
if len(scalar) != 32 {
return nil, errors.New("invalid scalar length")
}
2022-07-15 16:42:39 +08:00
if e.p == nil {
e.p = &twistPoint{}
}
//e.p.Mul(twistGen, k)
tables := e.generatorTable()
// This is also a scalar multiplication with a four-bit window like in
// ScalarMult, but in this case the doublings are precomputed. The value
// [windowValue]G added at iteration k would normally get doubled
// (totIterations-k)×4 times, but with a larger precomputation we can
// instead add [2^((totIterations-k)×4)][windowValue]G and avoid the
// doublings between iterations.
t := NewTwistPoint()
e.p.SetInfinity()
tableIndex := len(tables) - 1
for _, byte := range scalar {
windowValue := byte >> 4
tables[tableIndex].Select(t, windowValue)
e.p.Add(e.p, t)
tableIndex--
windowValue = byte & 0b1111
tables[tableIndex].Select(t, windowValue)
e.p.Add(e.p, t)
tableIndex--
}
2022-11-25 10:11:46 +08:00
return e, nil
2022-07-15 16:42:39 +08:00
}
// ScalarMult sets e to a*k and then returns e.
2022-11-25 10:11:46 +08:00
func (e *G2) ScalarMult(a *G2, scalar []byte) (*G2, error) {
2022-07-15 16:42:39 +08:00
if e.p == nil {
e.p = &twistPoint{}
}
//e.p.Mul(a.p, k)
// Compute a twistPointTable for the base point a.
var table = twistPointTable{NewTwistPoint(), NewTwistPoint(), NewTwistPoint(),
NewTwistPoint(), NewTwistPoint(), NewTwistPoint(), NewTwistPoint(),
NewTwistPoint(), NewTwistPoint(), NewTwistPoint(), NewTwistPoint(),
NewTwistPoint(), NewTwistPoint(), NewTwistPoint(), NewTwistPoint()}
table[0].Set(a.p)
for i := 1; i < 15; i += 2 {
table[i].Double(table[i/2])
table[i+1].Add(table[i], a.p)
}
// Instead of doing the classic double-and-add chain, we do it with a
// four-bit window: we double four times, and then add [0-15]P.
t := &G2{NewTwistPoint()}
e.p.SetInfinity()
2022-11-25 10:11:46 +08:00
for i, byte := range scalar {
2022-07-15 16:42:39 +08:00
// No need to double on the first iteration, as p is the identity at
// this point, and [N]∞ = ∞.
if i != 0 {
e.p.Double(e.p)
e.p.Double(e.p)
e.p.Double(e.p)
e.p.Double(e.p)
}
windowValue := byte >> 4
table.Select(t.p, windowValue)
e.Add(e, t)
e.p.Double(e.p)
e.p.Double(e.p)
e.p.Double(e.p)
e.p.Double(e.p)
windowValue = byte & 0b1111
table.Select(t.p, windowValue)
e.Add(e, t)
}
2022-11-25 10:11:46 +08:00
return e, nil
2022-07-15 16:42:39 +08:00
}
// Add sets e to a+b and then returns e.
func (e *G2) Add(a, b *G2) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Add(a.p, b.p)
return e
}
// Neg sets e to -a and then returns e.
func (e *G2) Neg(a *G2) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Neg(a.p)
return e
}
// Set sets e to a and then returns e.
func (e *G2) Set(a *G2) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Set(a.p)
return e
}
// Marshal converts e into a byte slice.
func (e *G2) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*4)
e.fillBytes(ret)
return ret
}
// MarshalUncompressed converts e into a byte slice with uncompressed point prefix
func (e *G2) MarshalUncompressed() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*4+1)
ret[0] = 4
e.fillBytes(ret[1:])
return ret
}
// MarshalCompressed converts e into a byte slice with uncompressed point prefix
func (e *G2) MarshalCompressed() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*2+1)
if e.p == nil {
e.p = &twistPoint{}
}
e.p.MakeAffine()
temp := &gfP{}
montDecode(temp, &e.p.y.y)
temp.Marshal(ret[1:])
ret[0] = (ret[numBytes] & 1) | 2
montDecode(temp, &e.p.x.x)
temp.Marshal(ret[1:])
montDecode(temp, &e.p.x.y)
temp.Marshal(ret[numBytes+1:])
return ret
}
// UnmarshalCompressed sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) UnmarshalCompressed(data []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(data) < 1+2*numBytes {
return nil, errors.New("sm9.G2: not enough data")
}
if data[0] != 2 && data[0] != 3 { // compressed form
return nil, errors.New("sm9.G2: invalid point compress byte")
}
var err error
// Unmarshal the points and check their caps
if e.p == nil {
e.p = &twistPoint{}
}
if err = e.p.x.x.Unmarshal(data[1:]); err != nil {
return nil, err
}
if err = e.p.x.y.Unmarshal(data[1+numBytes:]); err != nil {
return nil, err
}
montEncode(&e.p.x.x, &e.p.x.x)
montEncode(&e.p.x.y, &e.p.x.y)
x3 := e.p.polynomial(&e.p.x)
e.p.y.Sqrt(x3)
x3y := &gfP{}
montDecode(x3y, &e.p.y.y)
if byte(x3y[0]&1) != data[0]&1 {
e.p.y.Neg(&e.p.y)
}
if e.p.x.IsZero() && e.p.y.IsZero() {
// This is the point at infinity.
e.p.y.SetOne()
e.p.z.SetZero()
e.p.t.SetZero()
} else {
e.p.z.SetOne()
e.p.t.SetOne()
if !e.p.IsOnCurve() {
return nil, errors.New("sm9.G2: malformed point")
}
}
return data[1+2*numBytes:], nil
}
func (e *G2) fillBytes(buffer []byte) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if e.p == nil {
e.p = &twistPoint{}
}
e.p.MakeAffine()
if e.p.IsInfinity() {
return
}
temp := &gfP{}
montDecode(temp, &e.p.x.x)
temp.Marshal(buffer)
montDecode(temp, &e.p.x.y)
temp.Marshal(buffer[numBytes:])
montDecode(temp, &e.p.y.x)
temp.Marshal(buffer[2*numBytes:])
montDecode(temp, &e.p.y.y)
temp.Marshal(buffer[3*numBytes:])
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) < 4*numBytes {
return nil, errors.New("sm9.G2: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = &twistPoint{}
}
var err error
if err = e.p.x.x.Unmarshal(m); err != nil {
return nil, err
}
if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil {
return nil, err
}
// Encode into Montgomery form and ensure it's on the curve
montEncode(&e.p.x.x, &e.p.x.x)
montEncode(&e.p.x.y, &e.p.x.y)
montEncode(&e.p.y.x, &e.p.y.x)
montEncode(&e.p.y.y, &e.p.y.y)
if e.p.x.IsZero() && e.p.y.IsZero() {
// This is the point at infinity.
e.p.y.SetOne()
e.p.z.SetZero()
e.p.t.SetZero()
} else {
e.p.z.SetOne()
e.p.t.SetOne()
if !e.p.IsOnCurve() {
return nil, errors.New("sm9.G2: malformed point")
}
}
return m[4*numBytes:], nil
}
// Equal compare e and other
func (e *G2) Equal(other *G2) bool {
if e.p == nil && other.p == nil {
return true
}
return e.p.x.Equal(&other.p.x) == 1 &&
e.p.y.Equal(&other.p.y) == 1 &&
e.p.z.Equal(&other.p.z) == 1 &&
e.p.t.Equal(&other.p.t) == 1
2022-07-15 16:42:39 +08:00
}
// IsOnCurve returns true if e is on the twist curve.
func (e *G2) IsOnCurve() bool {
return e.p.IsOnCurve()
}