mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-25 11:46:19 +08:00
233 lines
5.1 KiB
Go
233 lines
5.1 KiB
Go
![]() |
// Code generated by addchain. DO NOT EDIT.
|
||
|
package bn256
|
||
|
|
||
|
// Sqrt sets e to a square root of x. If x is not a square, Sqrt returns
|
||
|
// false and e is unchanged. e and x can overlap.
|
||
|
func Sqrt(e, x *gfP) (isSquare bool) {
|
||
|
candidate, b, i := &gfP{}, &gfP{}, &gfP{}
|
||
|
sqrtCandidate(candidate, x)
|
||
|
gfpMul(b, twoExpPMinus5Over8, candidate) // b=ta1
|
||
|
gfpMul(candidate, x, b) // a1=fb
|
||
|
gfpMul(i, two, candidate) // i=2(fb)
|
||
|
gfpMul(i, i, b) // i=2(fb)b
|
||
|
gfpSub(i, i, one) // i=2(fb)b-1
|
||
|
gfpMul(i, candidate, i) // i=(fb)(2(fb)b-1)
|
||
|
square := new(gfP).Square(i)
|
||
|
if square.Equal(x) != 1 {
|
||
|
return false
|
||
|
}
|
||
|
e.Set(i)
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// sqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
|
||
|
func sqrtCandidate(z, x *gfP) {
|
||
|
// Since p = 8k+5, exponentiation by (p - 5) / 8 yields a square root candidate.
|
||
|
//
|
||
|
// The sequence of 54 multiplications and 248 squarings is derived from the
|
||
|
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||
|
//
|
||
|
// _10 = 2*1
|
||
|
// _100 = 2*_10
|
||
|
// _110 = _10 + _100
|
||
|
// _1010 = _100 + _110
|
||
|
// _1011 = 1 + _1010
|
||
|
// _1101 = _10 + _1011
|
||
|
// _1111 = _10 + _1101
|
||
|
// _10000 = 1 + _1111
|
||
|
// _10101 = _110 + _1111
|
||
|
// _11011 = _110 + _10101
|
||
|
// _11101 = _10 + _11011
|
||
|
// _11111 = _10 + _11101
|
||
|
// _101001 = _1010 + _11111
|
||
|
// _101011 = _10 + _101001
|
||
|
// _111011 = _10000 + _101011
|
||
|
// _1000101 = _1010 + _111011
|
||
|
// _1001111 = _1010 + _1000101
|
||
|
// _1010001 = _10 + _1001111
|
||
|
// _1011011 = _1010 + _1010001
|
||
|
// _1011101 = _10 + _1011011
|
||
|
// _1011111 = _10 + _1011101
|
||
|
// _1100011 = _100 + _1011111
|
||
|
// _1101001 = _110 + _1100011
|
||
|
// _1101101 = _100 + _1101001
|
||
|
// _1101111 = _10 + _1101101
|
||
|
// _1110101 = _110 + _1101111
|
||
|
// i72 = ((_1011011 << 3 + 1) << 33 + _10101) << 8
|
||
|
// i94 = ((_11101 + i72) << 9 + _1101111) << 10 + _1110101
|
||
|
// i116 = ((2*i94 + 1) << 14 + _1110101) << 5
|
||
|
// i129 = 2*((_1101 + i116) << 9 + _1110101) + _10101
|
||
|
// i153 = ((i129 << 5 + _1011) << 9 + _111011) << 8
|
||
|
// i174 = ((_11101 + i153) << 9 + _101001) << 9 + _11111
|
||
|
// i201 = ((i174 << 8 + _101001) << 9 + _1101001) << 8
|
||
|
// i220 = ((_1100011 + i201) << 8 + _1001111) << 8 + _1011101
|
||
|
// i244 = ((i220 << 7 + _1101101) << 7 + _1011111) << 8
|
||
|
// i260 = ((_101011 + i244) << 6 + _11111) << 7 + _11011
|
||
|
// i286 = ((i260 << 9 + _1001111) << 7 + _1100011) << 8
|
||
|
// return ((_1010001 + i286) << 8 + _1000101) << 5 + _1111
|
||
|
//
|
||
|
var t0 = new(gfP)
|
||
|
var t1 = new(gfP)
|
||
|
var t2 = new(gfP)
|
||
|
var t3 = new(gfP)
|
||
|
var t4 = new(gfP)
|
||
|
var t5 = new(gfP)
|
||
|
var t6 = new(gfP)
|
||
|
var t7 = new(gfP)
|
||
|
var t8 = new(gfP)
|
||
|
var t9 = new(gfP)
|
||
|
var t10 = new(gfP)
|
||
|
var t11 = new(gfP)
|
||
|
var t12 = new(gfP)
|
||
|
var t13 = new(gfP)
|
||
|
var t14 = new(gfP)
|
||
|
var t15 = new(gfP)
|
||
|
var t16 = new(gfP)
|
||
|
var t17 = new(gfP)
|
||
|
var t18 = new(gfP)
|
||
|
var t19 = new(gfP)
|
||
|
|
||
|
t18.Square(x)
|
||
|
t8.Square(t18)
|
||
|
t16.Mul(t18, t8)
|
||
|
t2.Mul(t8, t16)
|
||
|
t14.Mul(x, t2)
|
||
|
t17.Mul(t18, t14)
|
||
|
z.Mul(t18, t17)
|
||
|
t0.Mul(x, z)
|
||
|
t15.Mul(t16, z)
|
||
|
t4.Mul(t16, t15)
|
||
|
t12.Mul(t18, t4)
|
||
|
t5.Mul(t18, t12)
|
||
|
t11.Mul(t2, t5)
|
||
|
t6.Mul(t18, t11)
|
||
|
t13.Mul(t0, t6)
|
||
|
t0.Mul(t2, t13)
|
||
|
t3.Mul(t2, t0)
|
||
|
t1.Mul(t18, t3)
|
||
|
t19.Mul(t2, t1)
|
||
|
t9.Mul(t18, t19)
|
||
|
t7.Mul(t18, t9)
|
||
|
t2.Mul(t8, t7)
|
||
|
t10.Mul(t16, t2)
|
||
|
t8.Mul(t8, t10)
|
||
|
t18.Mul(t18, t8)
|
||
|
t16.Mul(t16, t18)
|
||
|
for s := 0; s < 3; s++ {
|
||
|
t19.Square(t19)
|
||
|
}
|
||
|
t19.Mul(x, t19)
|
||
|
for s := 0; s < 33; s++ {
|
||
|
t19.Square(t19)
|
||
|
}
|
||
|
t19.Mul(t15, t19)
|
||
|
for s := 0; s < 8; s++ {
|
||
|
t19.Square(t19)
|
||
|
}
|
||
|
t19.Mul(t12, t19)
|
||
|
for s := 0; s < 9; s++ {
|
||
|
t19.Square(t19)
|
||
|
}
|
||
|
t18.Mul(t18, t19)
|
||
|
for s := 0; s < 10; s++ {
|
||
|
t18.Square(t18)
|
||
|
}
|
||
|
t18.Mul(t16, t18)
|
||
|
t18.Square(t18)
|
||
|
t18.Mul(x, t18)
|
||
|
for s := 0; s < 14; s++ {
|
||
|
t18.Square(t18)
|
||
|
}
|
||
|
t18.Mul(t16, t18)
|
||
|
for s := 0; s < 5; s++ {
|
||
|
t18.Square(t18)
|
||
|
}
|
||
|
t17.Mul(t17, t18)
|
||
|
for s := 0; s < 9; s++ {
|
||
|
t17.Square(t17)
|
||
|
}
|
||
|
t16.Mul(t16, t17)
|
||
|
t16.Square(t16)
|
||
|
t15.Mul(t15, t16)
|
||
|
for s := 0; s < 5; s++ {
|
||
|
t15.Square(t15)
|
||
|
}
|
||
|
t14.Mul(t14, t15)
|
||
|
for s := 0; s < 9; s++ {
|
||
|
t14.Square(t14)
|
||
|
}
|
||
|
t13.Mul(t13, t14)
|
||
|
for s := 0; s < 8; s++ {
|
||
|
t13.Square(t13)
|
||
|
}
|
||
|
t12.Mul(t12, t13)
|
||
|
for s := 0; s < 9; s++ {
|
||
|
t12.Square(t12)
|
||
|
}
|
||
|
t12.Mul(t11, t12)
|
||
|
for s := 0; s < 9; s++ {
|
||
|
t12.Square(t12)
|
||
|
}
|
||
|
t12.Mul(t5, t12)
|
||
|
for s := 0; s < 8; s++ {
|
||
|
t12.Square(t12)
|
||
|
}
|
||
|
t11.Mul(t11, t12)
|
||
|
for s := 0; s < 9; s++ {
|
||
|
t11.Square(t11)
|
||
|
}
|
||
|
t10.Mul(t10, t11)
|
||
|
for s := 0; s < 8; s++ {
|
||
|
t10.Square(t10)
|
||
|
}
|
||
|
t10.Mul(t2, t10)
|
||
|
for s := 0; s < 8; s++ {
|
||
|
t10.Square(t10)
|
||
|
}
|
||
|
t10.Mul(t3, t10)
|
||
|
for s := 0; s < 8; s++ {
|
||
|
t10.Square(t10)
|
||
|
}
|
||
|
t9.Mul(t9, t10)
|
||
|
for s := 0; s < 7; s++ {
|
||
|
t9.Square(t9)
|
||
|
}
|
||
|
t8.Mul(t8, t9)
|
||
|
for s := 0; s < 7; s++ {
|
||
|
t8.Square(t8)
|
||
|
}
|
||
|
t7.Mul(t7, t8)
|
||
|
for s := 0; s < 8; s++ {
|
||
|
t7.Square(t7)
|
||
|
}
|
||
|
t6.Mul(t6, t7)
|
||
|
for s := 0; s < 6; s++ {
|
||
|
t6.Square(t6)
|
||
|
}
|
||
|
t5.Mul(t5, t6)
|
||
|
for s := 0; s < 7; s++ {
|
||
|
t5.Square(t5)
|
||
|
}
|
||
|
t4.Mul(t4, t5)
|
||
|
for s := 0; s < 9; s++ {
|
||
|
t4.Square(t4)
|
||
|
}
|
||
|
t3.Mul(t3, t4)
|
||
|
for s := 0; s < 7; s++ {
|
||
|
t3.Square(t3)
|
||
|
}
|
||
|
t2.Mul(t2, t3)
|
||
|
for s := 0; s < 8; s++ {
|
||
|
t2.Square(t2)
|
||
|
}
|
||
|
t1.Mul(t1, t2)
|
||
|
for s := 0; s < 8; s++ {
|
||
|
t1.Square(t1)
|
||
|
}
|
||
|
t0.Mul(t0, t1)
|
||
|
for s := 0; s < 5; s++ {
|
||
|
t0.Square(t0)
|
||
|
}
|
||
|
z.Mul(z, t0)
|
||
|
}
|