mirror of
https://github.com/emmansun/gmsm.git
synced 2025-05-10 19:16:18 +08:00
499 lines
13 KiB
Go
499 lines
13 KiB
Go
![]() |
// Copyright 2025 Sun Yimin. All rights reserved.
|
||
|
// Use of this source code is governed by a MIT-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
//go:build go1.24
|
||
|
|
||
|
package mldsa
|
||
|
|
||
|
import (
|
||
|
"crypto"
|
||
|
"crypto/sha3"
|
||
|
"crypto/subtle"
|
||
|
"errors"
|
||
|
"io"
|
||
|
)
|
||
|
|
||
|
// A PrivateKey65 is the private key for the ML-DSA-65 signature scheme.
|
||
|
type PrivateKey65 struct {
|
||
|
rho [32]byte // public random seed
|
||
|
k [32]byte // private random seed for signing
|
||
|
tr [64]byte // pre-cached public key Hash, H(pk, 64)
|
||
|
s1 [l65]ringElement // private secret of size L with short coefficients (-4..4) or (-2..2)
|
||
|
s2 [k65]ringElement // private secret of size K with short coefficients (-4..4) or (-2..2)
|
||
|
t0 [k65]ringElement // the Polynomial encoding of the 13 LSB of each coefficient of the uncompressed public key polynomial t. This is saved as part of the private key.
|
||
|
a [k65 * l65]nttElement // a is generated and stored in NTT representation
|
||
|
}
|
||
|
|
||
|
// A Key65 is the key pair for the ML-DSA-65 signature scheme.
|
||
|
type Key65 struct {
|
||
|
PrivateKey65
|
||
|
xi [32]byte // input seed
|
||
|
t1 [k65]ringElement // the Polynomial encoding of the 10 MSB of each coefficient of the uncompressed public key polynomial t. This is saved as part of the public key.
|
||
|
}
|
||
|
|
||
|
// A PublicKey65 is the public key for the ML-DSA-65 signature scheme.
|
||
|
type PublicKey65 struct {
|
||
|
rho [32]byte
|
||
|
t1 [k65]ringElement
|
||
|
tr [64]byte // H(pk, 64), need to further check if public key requires it
|
||
|
a [k65 * l65]nttElement // a is generated and stored in NTT representation
|
||
|
}
|
||
|
|
||
|
// PublicKey generates and returns the corresponding public key for the given
|
||
|
// Key65 instance.
|
||
|
func (sk *Key65) PublicKey() *PublicKey65 {
|
||
|
return &PublicKey65{
|
||
|
rho: sk.rho,
|
||
|
t1: sk.t1,
|
||
|
tr: sk.tr,
|
||
|
a: sk.a,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (pk *PublicKey65) Equal(x crypto.PublicKey) bool {
|
||
|
xx, ok := x.(*PublicKey65)
|
||
|
if !ok {
|
||
|
return false
|
||
|
}
|
||
|
return pk.rho == xx.rho && pk.t1 == xx.t1
|
||
|
}
|
||
|
|
||
|
// Bytes converts the PublicKey65 instance into a byte slice.
|
||
|
// See FIPS 204, Algorithm 22, pkEncode()
|
||
|
func (pk *PublicKey65) Bytes() []byte {
|
||
|
// The actual logic is in a separate function to outline this allocation.
|
||
|
b := make([]byte, 0, PublicKeySize65)
|
||
|
return pk.bytes(b)
|
||
|
}
|
||
|
|
||
|
func (pk *PublicKey65) bytes(b []byte) []byte {
|
||
|
b = append(b, pk.rho[:]...)
|
||
|
for _, f := range pk.t1 {
|
||
|
b = simpleBitPack10Bits(b, f)
|
||
|
}
|
||
|
return b
|
||
|
}
|
||
|
|
||
|
// Bytes returns the byte representation of the PrivateKey65.
|
||
|
// It copies the internal seed (xi) into a fixed-size byte array
|
||
|
// and returns it as a slice.
|
||
|
func (sk *Key65) Bytes() []byte {
|
||
|
var b [SeedSize]byte
|
||
|
copy(b[:], sk.xi[:])
|
||
|
return b[:]
|
||
|
}
|
||
|
|
||
|
// Bytes converts the PrivateKey65 instance into a byte slice.
|
||
|
// See FIPS 204, Algorithm 24, skEncode()
|
||
|
func (sk *PrivateKey65) Bytes() []byte {
|
||
|
b := make([]byte, 0, PrivateKeySize65)
|
||
|
return sk.bytes(b)
|
||
|
}
|
||
|
|
||
|
func (sk *PrivateKey65) bytes(b []byte) []byte {
|
||
|
b = append(b, sk.rho[:]...)
|
||
|
b = append(b, sk.k[:]...)
|
||
|
b = append(b, sk.tr[:]...)
|
||
|
for _, f := range sk.s1 {
|
||
|
b = bitPackSigned4(b, f)
|
||
|
}
|
||
|
for _, f := range sk.s2 {
|
||
|
b = bitPackSigned4(b, f)
|
||
|
}
|
||
|
for _, f := range sk.t0 {
|
||
|
b = bitPackSigned4096(b, f)
|
||
|
}
|
||
|
return b
|
||
|
}
|
||
|
|
||
|
func (sk *PrivateKey65) Equal(x any) bool {
|
||
|
xx, ok := x.(*PrivateKey65)
|
||
|
if !ok {
|
||
|
return false
|
||
|
}
|
||
|
return sk.rho == xx.rho && sk.k == xx.k && sk.tr == xx.tr &&
|
||
|
sk.s1 == xx.s1 && sk.s2 == xx.s2 && sk.t0 == xx.t0
|
||
|
}
|
||
|
|
||
|
// GenerateKey65 generates a new Key65 (ML-DSA-65) using the provided random source.
|
||
|
func GenerateKey65(rand io.Reader) (*Key65, error) {
|
||
|
// The actual logic is in a separate function to outline this allocation.
|
||
|
sk := &Key65{}
|
||
|
return generateKey65(sk, rand)
|
||
|
}
|
||
|
|
||
|
func generateKey65(sk *Key65, rand io.Reader) (*Key65, error) {
|
||
|
// Generate a random seed.
|
||
|
var seed [SeedSize]byte
|
||
|
if _, err := io.ReadFull(rand, seed[:]); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
dsaKeyGen65(sk, &seed)
|
||
|
return sk, nil
|
||
|
}
|
||
|
|
||
|
// NewKey65 creates a new instance of Key65 using the provided seed.
|
||
|
func NewKey65(seed []byte) (*Key65, error) {
|
||
|
// The actual logic is in a separate function to outline this allocation.
|
||
|
sk := &Key65{}
|
||
|
return newPrivateKey65FromSeed(sk, seed)
|
||
|
}
|
||
|
|
||
|
func newPrivateKey65FromSeed(sk *Key65, seed []byte) (*Key65, error) {
|
||
|
if len(seed) != SeedSize {
|
||
|
return nil, errors.New("mldsa: invalid seed length")
|
||
|
}
|
||
|
xi := (*[32]byte)(seed)
|
||
|
dsaKeyGen65(sk, xi)
|
||
|
return sk, nil
|
||
|
}
|
||
|
|
||
|
func dsaKeyGen65(sk *Key65, xi *[32]byte) {
|
||
|
sk.xi = *xi
|
||
|
H := sha3.NewSHAKE256()
|
||
|
H.Write(xi[:])
|
||
|
H.Write([]byte{k65})
|
||
|
H.Write([]byte{l65})
|
||
|
K := make([]byte, 128)
|
||
|
H.Read(K)
|
||
|
rho, rho1 := K[:32], K[32:96]
|
||
|
K = K[96:]
|
||
|
|
||
|
sk.rho = [32]byte(rho)
|
||
|
sk.k = [32]byte(K)
|
||
|
|
||
|
s1 := &sk.s1
|
||
|
s2 := &sk.s2
|
||
|
// Algorithm 33, ExpandS
|
||
|
for s := byte(0); s < l65; s++ {
|
||
|
s1[s] = rejBoundedPoly(rho1, eta4, 0, s)
|
||
|
}
|
||
|
for r := byte(0); r < k65; r++ {
|
||
|
s2[r] = rejBoundedPoly(rho1, eta4, 0, r+l65)
|
||
|
}
|
||
|
|
||
|
// Using rho generate A' = A in NTT form
|
||
|
A := &sk.a
|
||
|
// Algorithm 32, ExpandA
|
||
|
for r := byte(0); r < k65; r++ {
|
||
|
for s := byte(0); s < l65; s++ {
|
||
|
A[r*l65+s] = rejNTTPoly(rho, s, r)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// t = NTT_inv(A' * NTT(s1)) + s2
|
||
|
var s1NTT [l65]nttElement
|
||
|
var nttT [k65]nttElement
|
||
|
for i := range s1 {
|
||
|
s1NTT[i] = ntt(s1[i])
|
||
|
}
|
||
|
for i := range nttT {
|
||
|
for j := range s1NTT {
|
||
|
nttT[i] = polyAdd(nttT[i], nttMul(s1NTT[j], A[i*l65+j]))
|
||
|
}
|
||
|
}
|
||
|
var t [k65]ringElement
|
||
|
t0 := &sk.t0
|
||
|
t1 := &sk.t1
|
||
|
for i := range nttT {
|
||
|
t[i] = polyAdd(inverseNTT(nttT[i]), s2[i])
|
||
|
// compress t
|
||
|
for j := range n {
|
||
|
t1[i][j], t0[i][j] = power2Round(t[i][j])
|
||
|
}
|
||
|
}
|
||
|
H.Reset()
|
||
|
ek := sk.PublicKey().Bytes()
|
||
|
H.Write(ek)
|
||
|
H.Read(sk.tr[:])
|
||
|
}
|
||
|
|
||
|
// NewPublicKey65 decode an public key from its encoded form.
|
||
|
// See FIPS 204, Algorithm 23 pkDecode()
|
||
|
func NewPublicKey65(b []byte) (*PublicKey65, error) {
|
||
|
// The actual logic is in a separate function to outline this allocation.
|
||
|
pk := &PublicKey65{}
|
||
|
return parsePublicKey65(pk, b)
|
||
|
}
|
||
|
|
||
|
// See FIPS 204, Algorithm 23 pkDecode()
|
||
|
func parsePublicKey65(pk *PublicKey65, b []byte) (*PublicKey65, error) {
|
||
|
if len(b) != PublicKeySize65 {
|
||
|
return nil, errors.New("mldsa: invalid public key length")
|
||
|
}
|
||
|
|
||
|
H := sha3.NewSHAKE256()
|
||
|
H.Write(b)
|
||
|
H.Read(pk.tr[:])
|
||
|
|
||
|
copy(pk.rho[:], b[:32])
|
||
|
b = b[32:]
|
||
|
for i := range k65 {
|
||
|
simpleBitUnpack10Bits(b, &pk.t1[i])
|
||
|
b = b[encodingSize10:]
|
||
|
}
|
||
|
|
||
|
A := &pk.a
|
||
|
rho := pk.rho[:]
|
||
|
// Algorithm 32, ExpandA
|
||
|
for r := byte(0); r < k65; r++ {
|
||
|
for s := byte(0); s < l65; s++ {
|
||
|
A[r*l65+s] = rejNTTPoly(rho, s, r)
|
||
|
}
|
||
|
}
|
||
|
return pk, nil
|
||
|
}
|
||
|
|
||
|
// NewPrivateKey65 decode an private key from its encoded form.
|
||
|
// See FIPS 204, Algorithm 25 skDecode()
|
||
|
func NewPrivateKey65(b []byte) (*PrivateKey65, error) {
|
||
|
// The actual logic is in a separate function to outline this allocation.
|
||
|
sk := &PrivateKey65{}
|
||
|
return parsePrivateKey65(sk, b)
|
||
|
}
|
||
|
|
||
|
// See FIPS 204, Algorithm 25 skDecode()
|
||
|
// Decode a private key from its encoded form.
|
||
|
func parsePrivateKey65(sk *PrivateKey65, b []byte) (*PrivateKey65, error) {
|
||
|
if len(b) != PrivateKeySize65 {
|
||
|
return nil, errors.New("mldsa: invalid private key length")
|
||
|
}
|
||
|
copy(sk.rho[:], b[:32])
|
||
|
copy(sk.k[:], b[32:64])
|
||
|
copy(sk.tr[:], b[64:128])
|
||
|
b = b[128:]
|
||
|
for i := range l65 {
|
||
|
f, err := bitUnpackSigned4(b)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
sk.s1[i] = f
|
||
|
b = b[encodingSize4:]
|
||
|
}
|
||
|
for i := range k65 {
|
||
|
f, err := bitUnpackSigned4(b)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
sk.s2[i] = f
|
||
|
b = b[encodingSize4:]
|
||
|
}
|
||
|
for i := range k65 {
|
||
|
bitUnpackSigned4096(b, &sk.t0[i])
|
||
|
b = b[encodingSize13:]
|
||
|
}
|
||
|
A := &sk.a
|
||
|
rho := sk.rho[:]
|
||
|
// Algorithm 32, ExpandA
|
||
|
for r := byte(0); r < k65; r++ {
|
||
|
for s := byte(0); s < l65; s++ {
|
||
|
A[r*l65+s] = rejNTTPoly(rho, s, r)
|
||
|
}
|
||
|
}
|
||
|
return sk, nil
|
||
|
}
|
||
|
|
||
|
func (sk *PrivateKey65) Sign(rand io.Reader, message, context []byte) ([]byte, error) {
|
||
|
if len(message) == 0 {
|
||
|
return nil, errors.New("mldsa: empty message")
|
||
|
}
|
||
|
if len(context) > 255 {
|
||
|
return nil, errors.New("mldsa: context too long")
|
||
|
}
|
||
|
var seed [SeedSize]byte
|
||
|
if _, err := io.ReadFull(rand, seed[:]); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
H := sha3.NewSHAKE256()
|
||
|
H.Write(sk.tr[:])
|
||
|
H.Write([]byte{0, byte(len(context))})
|
||
|
if len(context) > 0 {
|
||
|
H.Write(context)
|
||
|
}
|
||
|
H.Write(message)
|
||
|
var mu [64]byte
|
||
|
H.Read(mu[:])
|
||
|
|
||
|
return sk.signInternal(seed[:], mu[:])
|
||
|
}
|
||
|
|
||
|
func (sk *PrivateKey65) signInternal(seed, mu []byte) ([]byte, error) {
|
||
|
var s1NTT [l65]nttElement
|
||
|
var s2NTT [k65]nttElement
|
||
|
var t0NTT [k65]nttElement
|
||
|
for i := range s1NTT {
|
||
|
s1NTT[i] = ntt(sk.s1[i])
|
||
|
}
|
||
|
for i := range s2NTT {
|
||
|
s2NTT[i] = ntt(sk.s2[i])
|
||
|
}
|
||
|
for i := range t0NTT {
|
||
|
t0NTT[i] = ntt(sk.t0[i])
|
||
|
}
|
||
|
var rho2 [64 + 2]byte
|
||
|
H := sha3.NewSHAKE256()
|
||
|
H.Write(sk.k[:])
|
||
|
H.Write(seed[:])
|
||
|
H.Write(mu[:])
|
||
|
H.Read(rho2[:64])
|
||
|
A := &sk.a
|
||
|
|
||
|
// rejection sampling loop
|
||
|
for kappa := 0; ; kappa = kappa + l65 {
|
||
|
// expand mask
|
||
|
var y [l65]ringElement
|
||
|
for i := range l65 {
|
||
|
index := kappa + i
|
||
|
rho2[64] = byte(index)
|
||
|
rho2[65] = byte(index >> 8)
|
||
|
y[i] = expandMask(rho2[:], gamma1TwoPower19)
|
||
|
}
|
||
|
// compute w and w1
|
||
|
var w, w1 [k65]ringElement
|
||
|
var wNTT [k65]nttElement
|
||
|
for i := range w {
|
||
|
for j := range y {
|
||
|
wNTT[i] = polyAdd(wNTT[i], nttMul(ntt(y[j]), A[i*l65+j]))
|
||
|
}
|
||
|
w[i] = inverseNTT(wNTT[i])
|
||
|
// high bits
|
||
|
for j := range w[i] {
|
||
|
w1[i][j] = fieldElement(compressHighBits(w[i][j], gamma2QMinus1Div32))
|
||
|
}
|
||
|
}
|
||
|
// commitment hash
|
||
|
var cTilde [lambda192 / 4]byte
|
||
|
var w1Encoded [encodingSize4]byte
|
||
|
H.Reset()
|
||
|
H.Write(mu[:])
|
||
|
for i := range k65 {
|
||
|
simpleBitPack4Bits(w1Encoded[:0], w1[i])
|
||
|
H.Write(w1Encoded[:])
|
||
|
}
|
||
|
H.Read(cTilde[:])
|
||
|
// verifier's challenge
|
||
|
cNTT := ntt(sampleInBall(cTilde[:], tau49))
|
||
|
|
||
|
var cs1 [l65]ringElement
|
||
|
var cs2 [k65]ringElement
|
||
|
var z [l65]ringElement
|
||
|
var r0 [k65][n]int32
|
||
|
// compute <<cs1>> and z = <<cs1>> + y
|
||
|
for i := range l65 {
|
||
|
cs1[i] = inverseNTT(nttMul(cNTT, s1NTT[i]))
|
||
|
z[i] = polyAdd(cs1[i], y[i])
|
||
|
}
|
||
|
// compute <<cs2>> and r0 = LowBits(w - <<cs2>>)
|
||
|
for i := range k65 {
|
||
|
cs2[i] = inverseNTT(nttMul(cNTT, s2NTT[i]))
|
||
|
for j := range cs2[i] {
|
||
|
_, r0[i][j] = decompose(fieldSub(w[i][j], cs2[i][j]), gamma2QMinus1Div32)
|
||
|
}
|
||
|
}
|
||
|
zNorm := vectorInfinityNorm(z[:], 0)
|
||
|
r0Norm := vectorInfinityNormSigned(r0[:], 0)
|
||
|
|
||
|
// if zNorm >= gamma1 - beta || r0Norm >= gamma2 - beta, then continue
|
||
|
if subtle.ConstantTimeLessOrEq(int(gamma1TwoPower19-beta65), zNorm)|subtle.ConstantTimeLessOrEq(int(gamma2QMinus1Div32-beta65), r0Norm) == 1 {
|
||
|
continue
|
||
|
}
|
||
|
// compute <<ct0>>
|
||
|
var ct0 [k65]ringElement
|
||
|
for i := range k65 {
|
||
|
ct0[i] = inverseNTT(nttMul(cNTT, t0NTT[i]))
|
||
|
}
|
||
|
// compute infinity norm of <<ct0>>
|
||
|
ct0Norm := vectorInfinityNorm(ct0[:], 0)
|
||
|
// make hint
|
||
|
var hints [k65]ringElement
|
||
|
vectorMakeHint(ct0[:], cs2[:], w[:], hints[:], gamma2QMinus1Div32)
|
||
|
// if the number of 1 in the hint is greater than omega or the infinity norm of <<ct0>> >= gamma2, then continue
|
||
|
if (subtle.ConstantTimeLessOrEq(int(omega55+1), vectorCountOnes(hints[:])) | subtle.ConstantTimeLessOrEq(gamma2QMinus1Div32, ct0Norm)) == 1 {
|
||
|
continue
|
||
|
}
|
||
|
// signature encoding
|
||
|
sig := make([]byte, 0, sigEncodedLen65)
|
||
|
sig = append(sig, cTilde[:]...)
|
||
|
for i := range l65 {
|
||
|
sig = bitPackSignedTwoPower19(sig, z[i])
|
||
|
}
|
||
|
return hintBitPack(sig, hints[:], omega55), nil
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (pk *PublicKey65) Verify(sig []byte, message, context []byte) bool {
|
||
|
if len(message) == 0 {
|
||
|
return false
|
||
|
}
|
||
|
if len(context) > 255 {
|
||
|
return false
|
||
|
}
|
||
|
if len(sig) != sigEncodedLen65 {
|
||
|
return false
|
||
|
}
|
||
|
H := sha3.NewSHAKE256()
|
||
|
H.Write(pk.tr[:])
|
||
|
H.Write([]byte{0, byte(len(context))})
|
||
|
H.Write(context)
|
||
|
H.Write(message)
|
||
|
var mu [64]byte
|
||
|
H.Read(mu[:])
|
||
|
|
||
|
return pk.verifyInternal(sig, mu[:])
|
||
|
}
|
||
|
|
||
|
func (pk *PublicKey65) verifyInternal(sig, mu []byte) bool {
|
||
|
// Decode the signature
|
||
|
cTilde := sig[:lambda192/4]
|
||
|
sig = sig[lambda192/4:]
|
||
|
var z [l65]ringElement
|
||
|
for i := range l65 {
|
||
|
bitUnpackSignedTwoPower19(sig, &z[i])
|
||
|
sig = sig[encodingSize20:]
|
||
|
}
|
||
|
zNorm := vectorInfinityNorm(z[:], 0)
|
||
|
var hints [k65]ringElement
|
||
|
if !hintBitUnpack(sig, hints[:], omega55) {
|
||
|
return false
|
||
|
}
|
||
|
// verifier's challenge
|
||
|
cNTT := ntt(sampleInBall(cTilde[:], tau49))
|
||
|
|
||
|
// t = t1 * 2^d
|
||
|
// tNTT = NTT(t)*cNTT
|
||
|
var tNTT [k65]nttElement
|
||
|
t := pk.t1
|
||
|
for i := range k65 {
|
||
|
for j := range t[i] {
|
||
|
t[i][j] <<= d
|
||
|
}
|
||
|
tNTT[i] = nttMul(ntt(t[i]), cNTT)
|
||
|
}
|
||
|
|
||
|
var w1, wApprox [k65]ringElement
|
||
|
var zNTT [k65]nttElement
|
||
|
for i := range k65 {
|
||
|
for j := 0; j < l65; j++ {
|
||
|
zNTT[i] = polyAdd(zNTT[i], nttMul(ntt(z[j]), pk.a[i*l65+j]))
|
||
|
}
|
||
|
zNTT[i] = polySub(zNTT[i], tNTT[i])
|
||
|
wApprox[i] = inverseNTT(zNTT[i])
|
||
|
}
|
||
|
|
||
|
H := sha3.NewSHAKE256()
|
||
|
H.Write(mu[:])
|
||
|
var w1Encoded [encodingSize4]byte
|
||
|
for i := range k65 {
|
||
|
for j := range wApprox[i] {
|
||
|
w1[i][j] = useHint(hints[i][j], wApprox[i][j], gamma2QMinus1Div32)
|
||
|
}
|
||
|
simpleBitPack4Bits(w1Encoded[:0], w1[i])
|
||
|
H.Write(w1Encoded[:])
|
||
|
}
|
||
|
var cTilde1 [lambda192 / 4]byte
|
||
|
H.Read(cTilde1[:])
|
||
|
return subtle.ConstantTimeLessOrEq(int(gamma1TwoPower19-beta65), zNorm) == 0 &&
|
||
|
subtle.ConstantTimeCompare(cTilde[:], cTilde1[:]) == 1
|
||
|
}
|