1197 lines
34 KiB
Go
Raw Normal View History

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bigmod
import (
"errors"
"math/bits"
2024-11-21 14:32:32 +08:00
"github.com/emmansun/gmsm/internal/byteorder"
)
const (
// _W is the size in bits of our limbs.
_W = bits.UintSize
// _S is the size in bytes of our limbs.
_S = _W / 8
)
// Note: These functions make many loops over all the words in a Nat.
// These loops used to be in assembly, invisible to -race, -asan, and -msan,
// but now they are in Go and incur significant overhead in those modes.
// To bring the old performance back, we mark all functions that loop
// over Nat words with //go:norace. Because //go:norace does not
// propagate across inlining, we must also mark functions that inline
// //go:norace functions - specifically, those that inline add, addMulVVW,
// assign, cmpGeq, rshift1, and sub.
// choice represents a constant-time boolean. The value of choice is always
// either 1 or 0. We use an int instead of bool in order to make decisions in
// constant time by turning it into a mask.
type choice uint
func not(c choice) choice { return 1 ^ c }
const yes = choice(1)
const no = choice(0)
// ctMask is all 1s if on is yes, and all 0s otherwise.
func ctMask(on choice) uint { return -uint(on) }
// ctEq returns 1 if x == y, and 0 otherwise. The execution time of this
// function does not depend on its inputs.
func ctEq(x, y uint) choice {
// If x != y, then either x - y or y - x will generate a carry.
_, c1 := bits.Sub(x, y, 0)
_, c2 := bits.Sub(y, x, 0)
return not(choice(c1 | c2))
}
// Nat represents an arbitrary natural number
//
// Each Nat has an announced length, which is the number of limbs it has stored.
// Operations on this number are allowed to leak this length, but will not leak
// any information about the values contained in those limbs.
type Nat struct {
// limbs is little-endian in base 2^W with W = bits.UintSize.
limbs []uint
}
// preallocTarget is the size in bits of the numbers used to implement the most
// common and most performant RSA key size. It's also enough to cover some of
// the operations of key sizes up to 4096.
const preallocTarget = 2048
const preallocLimbs = (preallocTarget + _W - 1) / _W
// NewNat returns a new nat with a size of zero, just like new(Nat), but with
// the preallocated capacity to hold a number of up to preallocTarget bits.
// NewNat inlines, so the allocation can live on the stack.
func NewNat() *Nat {
limbs := make([]uint, 0, preallocLimbs)
return &Nat{limbs}
}
// expand expands x to n limbs, leaving its value unchanged.
func (x *Nat) expand(n int) *Nat {
if len(x.limbs) > n {
panic("bigmod: internal error: shrinking nat")
}
if cap(x.limbs) < n {
newLimbs := make([]uint, n)
copy(newLimbs, x.limbs)
x.limbs = newLimbs
return x
}
extraLimbs := x.limbs[len(x.limbs):n]
2025-02-26 10:50:35 +08:00
clear(extraLimbs)
x.limbs = x.limbs[:n]
return x
}
// reset returns a zero nat of n limbs, reusing x's storage if n <= cap(x.limbs).
func (x *Nat) reset(n int) *Nat {
if cap(x.limbs) < n {
x.limbs = make([]uint, n)
return x
}
// Clear both the returned limbs and the previously used ones.
clear(x.limbs[:max(n, len(x.limbs))])
x.limbs = x.limbs[:n]
return x
}
// resetToBytes assigns x = b, where b is a slice of big-endian bytes, resizing
// n to the appropriate size.
//
// The announced length of x is set based on the actual bit size of the input,
// ignoring leading zeroes.
func (x *Nat) resetToBytes(b []byte) *Nat {
x.reset((len(b) + _S - 1) / _S)
if err := x.setBytes(b); err != nil {
panic("bigmod: internal error: bad arithmetic")
}
return x.trim()
}
// trim reduces the size of x to match its value.
func (x *Nat) trim() *Nat {
// Trim most significant (trailing in little-endian) zero limbs.
// We assume comparison with zero (but not the branch) is constant time.
for i := len(x.limbs) - 1; i >= 0; i-- {
if x.limbs[i] != 0 {
break
}
x.limbs = x.limbs[:i]
}
return x
}
// set assigns x = y, optionally resizing x to the appropriate size.
func (x *Nat) set(y *Nat) *Nat {
x.reset(len(y.limbs))
copy(x.limbs, y.limbs)
return x
}
// Bytes returns x as a zero-extended big-endian byte slice. The size of the
// slice will match the size of m.
//
// x must have the same size as m and it must be less than or equal to m.
func (x *Nat) Bytes(m *Modulus) []byte {
i := m.Size()
bytes := make([]byte, i)
for _, limb := range x.limbs {
for j := 0; j < _S; j++ {
i--
if i < 0 {
if limb == 0 {
break
}
panic("bigmod: modulus is smaller than nat")
}
bytes[i] = byte(limb)
limb >>= 8
}
}
return bytes
}
// SetBytes assigns x = b, where b is a slice of big-endian bytes.
// SetBytes returns an error if b >= m.
//
// The output will be resized to the size of m and overwritten.
//
//go:norace
func (x *Nat) SetBytes(b []byte, m *Modulus) (*Nat, error) {
x.resetFor(m)
if err := x.setBytes(b); err != nil {
return nil, err
}
if x.cmpGeq(m.nat) == yes {
return nil, errors.New("input overflows the modulus")
}
return x, nil
}
// SetOverflowingBytes assigns x = b, where b is a slice of big-endian bytes.
// SetOverflowingBytes returns an error if b has a longer bit length than m, but
// reduces overflowing values up to 2^⌈log2(m)⌉ - 1.
//
// The output will be resized to the size of m and overwritten.
func (x *Nat) SetOverflowingBytes(b []byte, m *Modulus) (*Nat, error) {
x.resetFor(m)
if err := x.setBytes(b); err != nil {
return nil, err
}
// setBytes would have returned an error if the input overflowed the limb
// size of the modulus, so now we only need to check if the most significant
// limb of x has more bits than the most significant limb of the modulus.
if bitLen(x.limbs[len(x.limbs)-1]) > bitLen(m.nat.limbs[len(m.nat.limbs)-1]) {
return nil, errors.New("input overflows the modulus size")
}
x.maybeSubtractModulus(no, m)
return x, nil
}
// bigEndianUint returns the contents of buf interpreted as a
// big-endian encoded uint value.
func bigEndianUint(buf []byte) uint {
if _W == 64 {
2024-11-21 14:32:32 +08:00
return uint(byteorder.BEUint64(buf))
}
2024-11-21 14:32:32 +08:00
return uint(byteorder.BEUint32(buf))
}
func (x *Nat) setBytes(b []byte) error {
i, k := len(b), 0
for k < len(x.limbs) && i >= _S {
x.limbs[k] = bigEndianUint(b[i-_S : i])
i -= _S
k++
}
for s := 0; s < _W && k < len(x.limbs) && i > 0; s += 8 {
x.limbs[k] |= uint(b[i-1]) << s
i--
}
if i > 0 {
return errors.New("input overflows the modulus size")
}
return nil
}
// SetUint assigns x = y.
//
// The output will be resized to the size of m and overwritten.
func (x *Nat) SetUint(y uint, m *Modulus) *Nat {
x.resetFor(m)
x.limbs[0] = y
return x
}
// Equal returns 1 if x == y, and 0 otherwise.
//
// Both operands must have the same announced length.
//
//go:norace
func (x *Nat) Equal(y *Nat) choice {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
yLimbs := y.limbs[:size]
equal := yes
for i := 0; i < size; i++ {
equal &= ctEq(xLimbs[i], yLimbs[i])
}
return equal
}
// IsZero returns 1 if x == 0, and 0 otherwise.
//
//go:norace
func (x *Nat) IsZero() choice {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
zero := yes
for i := 0; i < size; i++ {
zero &= ctEq(xLimbs[i], 0)
}
return zero
}
// IsOne returns 1 if x == 1, and 0 otherwise.
//
//go:norace
func (x *Nat) IsOne() choice {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
if len(xLimbs) == 0 {
return no
}
one := ctEq(xLimbs[0], 1)
for i := 1; i < size; i++ {
one &= ctEq(xLimbs[i], 0)
}
return one
}
// IsMinusOne returns 1 if x == -1 mod m, and 0 otherwise.
//
// The length of x must be the same as the modulus. x must already be reduced
// modulo m.
//
//go:norace
func (x *Nat) IsMinusOne(m *Modulus) choice {
minusOne := m.Nat()
minusOne.SubOne(m)
return x.Equal(minusOne)
}
// IsOdd returns 1 if x is odd, and 0 otherwise.
func (x *Nat) IsOdd() choice {
if len(x.limbs) == 0 {
return no
}
return choice(x.limbs[0] & 1)
}
// TrailingZeroBitsVarTime returns the number of trailing zero bits in x.
func (x *Nat) TrailingZeroBitsVarTime() uint {
var t uint
limbs := x.limbs
for _, l := range limbs {
if l == 0 {
t += _W
continue
}
t += uint(bits.TrailingZeros(l))
break
}
return t
}
// cmpGeq returns 1 if x >= y, and 0 otherwise.
//
// Both operands must have the same announced length.
//
//go:norace
func (x *Nat) cmpGeq(y *Nat) choice {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
yLimbs := y.limbs[:size]
var c uint
for i := 0; i < size; i++ {
_, c = bits.Sub(xLimbs[i], yLimbs[i], c)
}
// If there was a carry, then subtracting y underflowed, so
// x is not greater than or equal to y.
return not(choice(c))
}
// assign sets x <- y if on == 1, and does nothing otherwise.
//
// Both operands must have the same announced length.
//
//go:norace
func (x *Nat) assign(on choice, y *Nat) *Nat {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
yLimbs := y.limbs[:size]
mask := ctMask(on)
for i := 0; i < size; i++ {
xLimbs[i] ^= mask & (xLimbs[i] ^ yLimbs[i])
}
return x
}
// add computes x += y and returns the carry.
//
// Both operands must have the same announced length.
//
//go:norace
func (x *Nat) add(y *Nat) (c uint) {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
yLimbs := y.limbs[:size]
for i := 0; i < size; i++ {
xLimbs[i], c = bits.Add(xLimbs[i], yLimbs[i], c)
}
return
}
// sub computes x -= y. It returns the borrow of the subtraction.
//
// Both operands must have the same announced length.
//
//go:norace
func (x *Nat) sub(y *Nat) (c uint) {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
yLimbs := y.limbs[:size]
for i := 0; i < size; i++ {
xLimbs[i], c = bits.Sub(xLimbs[i], yLimbs[i], c)
}
return
}
// ShiftRightVarTime sets x = x >> n.
//
// The announced length of x is unchanged.
//
//go:norace
func (x *Nat) ShiftRightVarTime(n uint) *Nat {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
shift := int(n % _W)
shiftLimbs := int(n / _W)
var shiftedLimbs []uint
if shiftLimbs < size {
shiftedLimbs = xLimbs[shiftLimbs:]
}
for i := range xLimbs {
if i >= len(shiftedLimbs) {
xLimbs[i] = 0
continue
}
xLimbs[i] = shiftedLimbs[i] >> shift
if i+1 < len(shiftedLimbs) {
xLimbs[i] |= shiftedLimbs[i+1] << (_W - shift)
}
}
return x
}
// BitLenVarTime returns the actual size of x in bits.
//
// The actual size of x (but nothing more) leaks through timing side-channels.
// Note that this is ordinarily secret, as opposed to the announced size of x.
func (x *Nat) BitLenVarTime() int {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
for i := size - 1; i >= 0; i-- {
if xLimbs[i] != 0 {
return i*_W + bitLen(xLimbs[i])
}
}
return 0
}
// bitLen is a version of bits.Len that only leaks the bit length of n, but not
// its value. bits.Len and bits.LeadingZeros use a lookup table for the
// low-order bits on some architectures.
func bitLen(n uint) int {
len := 0
// We assume, here and elsewhere, that comparison to zero is constant time
// with respect to different non-zero values.
for n != 0 {
len++
n >>= 1
}
return len
}
// Modulus is used for modular arithmetic, precomputing relevant constants.
//
// A Modulus can leak the exact number of bits needed to store its value
// and is stored without padding. Its actual value is still kept secret.
type Modulus struct {
// The underlying natural number for this modulus.
//
// This will be stored without any padding, and shouldn't alias with any
// other natural number being used.
nat *Nat
// If m is even, the following fields are not set.
odd bool
m0inv uint // -nat.limbs[0]⁻¹ mod _W
rr *Nat // R*R for montgomeryRepresentation
}
// rr returns R*R with R = 2^(_W * n) and n = len(m.nat.limbs).
func rr(m *Modulus) *Nat {
rr := NewNat().ExpandFor(m)
n := uint(len(rr.limbs))
mLen := uint(m.BitLen())
logR := _W * n
// We start by computing R = 2^(_W * n) mod m. We can get pretty close, to
// 2^⌊log₂m⌋, by setting the highest bit we can without having to reduce.
rr.limbs[n-1] = 1 << ((mLen - 1) % _W)
// Then we double until we reach 2^(_W * n).
for i := mLen - 1; i < logR; i++ {
rr.Add(rr, m)
}
// Next we need to get from R to 2^(_W * n) R mod m (aka from one to R in
// the Montgomery domain, meaning we can use Montgomery multiplication now).
// We could do that by doubling _W * n times, or with a square-and-double
// chain log2(_W * n) long. Turns out the fastest thing is to start out with
// doublings, and switch to square-and-double once the exponent is large
// enough to justify the cost of the multiplications.
// The threshold is selected experimentally as a linear function of n.
threshold := n / 4
// We calculate how many of the most-significant bits of the exponent we can
// compute before crossing the threshold, and we do it with doublings.
i := bits.UintSize
for logR>>i <= threshold {
i--
}
for k := uint(0); k < logR>>i; k++ {
rr.Add(rr, m)
}
// Then we process the remaining bits of the exponent with a
// square-and-double chain.
for i > 0 {
rr.montgomeryMul(rr, rr, m)
i--
if logR>>i&1 != 0 {
rr.Add(rr, m)
}
}
return rr
}
// minusInverseModW computes -x⁻¹ mod _W with x odd.
//
// This operation is used to precompute a constant involved in Montgomery
// multiplication.
func minusInverseModW(x uint) uint {
// Every iteration of this loop doubles the least-significant bits of
// correct inverse in y. The first three bits are already correct (1⁻¹ = 1,
// 3⁻¹ = 3, 5⁻¹ = 5, and 7⁻¹ = 7 mod 8), so doubling five times is enough
// for 64 bits (and wastes only one iteration for 32 bits).
//
// See https://crypto.stackexchange.com/a/47496.
y := x
for i := 0; i < 5; i++ {
y = y * (2 - x*y)
}
return -y
}
// NewModulus creates a new Modulus from a slice of big-endian bytes. The
// modulus must be greater than one.
//
// The number of significant bits and whether the modulus is even is leaked
// through timing side-channels.
func NewModulus(b []byte) (*Modulus, error) {
n := NewNat().resetToBytes(b)
return newModulus(n)
}
// NewModulusProduct creates a new Modulus from the product of two numbers
// represented as big-endian byte slices. The result must be greater than one.
//
//go:norace
func NewModulusProduct(a, b []byte) (*Modulus, error) {
x := NewNat().resetToBytes(a)
y := NewNat().resetToBytes(b)
n := NewNat().reset(len(x.limbs) + len(y.limbs))
for i := range y.limbs {
n.limbs[i+len(x.limbs)] = addMulVVW(n.limbs[i:i+len(x.limbs)], x.limbs, y.limbs[i])
}
return newModulus(n.trim())
}
func newModulus(n *Nat) (*Modulus, error) {
m := &Modulus{nat: n}
if m.nat.IsZero() == yes || m.nat.IsOne() == yes {
return nil, errors.New("modulus must be > 1")
}
if m.nat.IsOdd() == 1 {
m.odd = true
m.m0inv = minusInverseModW(m.nat.limbs[0])
m.rr = rr(m)
}
return m, nil
}
// Size returns the size of m in bytes.
func (m *Modulus) Size() int {
return (m.BitLen() + 7) / 8
}
// BitLen returns the size of m in bits.
func (m *Modulus) BitLen() int {
return m.nat.BitLenVarTime()
}
// Nat returns m as a Nat.
func (m *Modulus) Nat() *Nat {
// Make a copy so that the caller can't modify m.nat or alias it with
// another Nat in a modulus operation.
n := NewNat()
n.set(m.nat)
return n
}
// shiftIn calculates x = x << _W + y mod m.
//
// This assumes that x is already reduced mod m, and that y < 2^_W.
//
//go:norace
func (x *Nat) shiftIn(y uint, m *Modulus) *Nat {
d := NewNat().resetFor(m)
// Eliminate bounds checks in the loop.
size := len(m.nat.limbs)
xLimbs := x.limbs[:size]
dLimbs := d.limbs[:size]
mLimbs := m.nat.limbs[:size]
// Each iteration of this loop computes x = 2x + b mod m, where b is a bit
// from y. Effectively, it left-shifts x and adds y one bit at a time,
// reducing it every time.
//
// To do the reduction, each iteration computes both 2x + b and 2x + b - m.
// The next iteration (and finally the return line) will use either result
// based on whether 2x + b overflows m.
needSubtraction := no
for i := _W - 1; i >= 0; i-- {
carry := (y >> i) & 1
var borrow uint
mask := ctMask(needSubtraction)
for i := 0; i < size; i++ {
l := xLimbs[i] ^ (mask & (xLimbs[i] ^ dLimbs[i]))
xLimbs[i], carry = bits.Add(l, l, carry)
dLimbs[i], borrow = bits.Sub(xLimbs[i], mLimbs[i], borrow)
}
// Like in maybeSubtractModulus, we need the subtraction if either it
// didn't underflow (meaning 2x + b > m) or if computing 2x + b
// overflowed (meaning 2x + b > 2^_W*n > m).
needSubtraction = not(choice(borrow)) | choice(carry)
}
return x.assign(needSubtraction, d)
}
// Mod calculates out = x mod m.
//
// This works regardless how large the value of x is.
//
// The output will be resized to the size of m and overwritten.
//
//go:norace
func (out *Nat) Mod(x *Nat, m *Modulus) *Nat {
out.resetFor(m)
// Working our way from the most significant to the least significant limb,
// we can insert each limb at the least significant position, shifting all
// previous limbs left by _W. This way each limb will get shifted by the
// correct number of bits. We can insert at least N - 1 limbs without
// overflowing m. After that, we need to reduce every time we shift.
i := len(x.limbs) - 1
// For the first N - 1 limbs we can skip the actual shifting and position
// them at the shifted position, which starts at min(N - 2, i).
start := len(m.nat.limbs) - 2
if i < start {
start = i
}
for j := start; j >= 0; j-- {
out.limbs[j] = x.limbs[i]
i--
}
// We shift in the remaining limbs, reducing modulo m each time.
for i >= 0 {
out.shiftIn(x.limbs[i], m)
i--
}
return out
}
// ExpandFor ensures out has the right size to work with operations modulo m.
//
// The announced size of out must be smaller than or equal to that of m.
func (out *Nat) ExpandFor(m *Modulus) *Nat {
return out.expand(len(m.nat.limbs))
}
// resetFor ensures out has the right size to work with operations modulo m.
//
// out is zeroed and may start at any size.
func (out *Nat) resetFor(m *Modulus) *Nat {
return out.reset(len(m.nat.limbs))
}
// maybeSubtractModulus computes x -= m if and only if x >= m or if "always" is yes.
//
// It can be used to reduce modulo m a value up to 2m - 1, which is a common
// range for results computed by higher level operations.
//
// always is usually a carry that indicates that the operation that produced x
// overflowed its size, meaning abstractly x > 2^_W*n > m even if x < m.
//
// x and m operands must have the same announced length.
//
//go:norace
func (x *Nat) maybeSubtractModulus(always choice, m *Modulus) {
t := NewNat().set(x)
underflow := t.sub(m.nat)
// We keep the result if x - m didn't underflow (meaning x >= m)
// or if always was set.
keep := not(choice(underflow)) | choice(always)
x.assign(keep, t)
}
// Sub computes x = x - y mod m.
//
// The length of both operands must be the same as the modulus. Both operands
// must already be reduced modulo m.
//
//go:norace
func (x *Nat) Sub(y *Nat, m *Modulus) *Nat {
underflow := x.sub(y)
// If the subtraction underflowed, add m.
t := NewNat().set(x)
t.add(m.nat)
x.assign(choice(underflow), t)
return x
}
// SubOne computes x = x - 1 mod m.
//
// The length of x must be the same as the modulus.
func (x *Nat) SubOne(m *Modulus) *Nat {
one := NewNat().ExpandFor(m)
one.limbs[0] = 1
// Sub asks for x to be reduced modulo m, while SubOne doesn't, but when
// y = 1, it works, and this is an internal use.
return x.Sub(one, m)
}
// Add computes x = x + y mod m.
//
// The length of both operands must be the same as the modulus. Both operands
// must already be reduced modulo m.
//
//go:norace
func (x *Nat) Add(y *Nat, m *Modulus) *Nat {
overflow := x.add(y)
x.maybeSubtractModulus(choice(overflow), m)
return x
}
// montgomeryRepresentation calculates x = x * R mod m, with R = 2^(_W * n) and
// n = len(m.nat.limbs).
//
// Faster Montgomery multiplication replaces standard modular multiplication for
// numbers in this representation.
//
// This assumes that x is already reduced mod m.
func (x *Nat) montgomeryRepresentation(m *Modulus) *Nat {
// A Montgomery multiplication (which computes a * b / R) by R * R works out
// to a multiplication by R, which takes the value out of the Montgomery domain.
return x.montgomeryMul(x, m.rr, m)
}
// montgomeryReduction calculates x = x / R mod m, with R = 2^(_W * n) and
// n = len(m.nat.limbs).
//
// This assumes that x is already reduced mod m.
func (x *Nat) montgomeryReduction(m *Modulus) *Nat {
// By Montgomery multiplying with 1 not in Montgomery representation, we
// convert out back from Montgomery representation, because it works out to
// dividing by R.
one := NewNat().ExpandFor(m)
one.limbs[0] = 1
return x.montgomeryMul(x, one, m)
}
// montgomeryMul calculates x = a * b / R mod m, with R = 2^(_W * n) and
// n = len(m.nat.limbs), also known as a Montgomery multiplication.
//
// All inputs should be the same length and already reduced modulo m.
// x will be resized to the size of m and overwritten.
//
//go:norace
func (x *Nat) montgomeryMul(a *Nat, b *Nat, m *Modulus) *Nat {
n := len(m.nat.limbs)
mLimbs := m.nat.limbs[:n]
aLimbs := a.limbs[:n]
bLimbs := b.limbs[:n]
switch n {
default:
// Attempt to use a stack-allocated backing array.
T := make([]uint, 0, preallocLimbs*2)
if cap(T) < n*2 {
T = make([]uint, 0, n*2)
}
T = T[:n*2]
// This loop implements Word-by-Word Montgomery Multiplication, as
// described in Algorithm 4 (Fig. 3) of "Efficient Software
// Implementations of Modular Exponentiation" by Shay Gueron
// [https://eprint.iacr.org/2011/239.pdf].
var c uint
for i := 0; i < n; i++ {
_ = T[n+i] // bounds check elimination hint
// Step 1 (T = a × b) is computed as a large pen-and-paper column
// multiplication of two numbers with n base-2^_W digits. If we just
// wanted to produce 2n-wide T, we would do
//
// for i := 0; i < n; i++ {
// d := bLimbs[i]
// T[n+i] = addMulVVW(T[i:n+i], aLimbs, d)
// }
//
// where d is a digit of the multiplier, T[i:n+i] is the shifted
// position of the product of that digit, and T[n+i] is the final carry.
// Note that T[i] isn't modified after processing the i-th digit.
//
// Instead of running two loops, one for Step 1 and one for Steps 26,
// the result of Step 1 is computed during the next loop. This is
// possible because each iteration only uses T[i] in Step 2 and then
// discards it in Step 6.
d := bLimbs[i]
c1 := addMulVVW(T[i:n+i], aLimbs, d)
// Step 6 is replaced by shifting the virtual window we operate
// over: T of the algorithm is T[i:] for us. That means that T1 in
// Step 2 (T mod 2^_W) is simply T[i]. k0 in Step 3 is our m0inv.
Y := T[i] * m.m0inv
// Step 4 and 5 add Y × m to T, which as mentioned above is stored
// at T[i:]. The two carries (from a × d and Y × m) are added up in
// the next word T[n+i], and the carry bit from that addition is
// brought forward to the next iteration.
c2 := addMulVVW(T[i:n+i], mLimbs, Y)
T[n+i], c = bits.Add(c1, c2, c)
}
// Finally for Step 7 we copy the final T window into x, and subtract m
// if necessary (which as explained in maybeSubtractModulus can be the
// case both if x >= m, or if x overflowed).
//
// The paper suggests in Section 4 that we can do an "Almost Montgomery
// Multiplication" by subtracting only in the overflow case, but the
// cost is very similar since the constant time subtraction tells us if
// x >= m as a side effect, and taking care of the broken invariant is
// highly undesirable (see https://go.dev/issue/13907).
copy(x.reset(n).limbs, T[n:])
x.maybeSubtractModulus(choice(c), m)
// The following specialized cases follow the exact same algorithm, but
// optimized for the sizes most used in RSA. addMulVVW is implemented in
// assembly with loop unrolling depending on the architecture and bounds
// checks are removed by the compiler thanks to the constant size.
case 256 / _W: // optimization for 256 bits nat
const n = 256 / _W // compiler hint
T := make([]uint, n*2)
var c uint
for i := 0; i < n; i++ {
d := bLimbs[i]
c1 := addMulVVW256(&T[i], &aLimbs[0], d)
Y := T[i] * m.m0inv
c2 := addMulVVW256(&T[i], &mLimbs[0], Y)
T[n+i], c = bits.Add(c1, c2, c)
}
copy(x.reset(n).limbs, T[n:])
x.maybeSubtractModulus(choice(c), m)
case 1024 / _W:
const n = 1024 / _W // compiler hint
T := make([]uint, n*2)
var c uint
for i := 0; i < n; i++ {
d := bLimbs[i]
c1 := addMulVVW1024(&T[i], &aLimbs[0], d)
Y := T[i] * m.m0inv
c2 := addMulVVW1024(&T[i], &mLimbs[0], Y)
T[n+i], c = bits.Add(c1, c2, c)
}
copy(x.reset(n).limbs, T[n:])
x.maybeSubtractModulus(choice(c), m)
case 1536 / _W:
const n = 1536 / _W // compiler hint
T := make([]uint, n*2)
var c uint
for i := 0; i < n; i++ {
d := bLimbs[i]
c1 := addMulVVW1536(&T[i], &aLimbs[0], d)
Y := T[i] * m.m0inv
c2 := addMulVVW1536(&T[i], &mLimbs[0], Y)
T[n+i], c = bits.Add(c1, c2, c)
}
copy(x.reset(n).limbs, T[n:])
x.maybeSubtractModulus(choice(c), m)
case 2048 / _W:
const n = 2048 / _W // compiler hint
T := make([]uint, n*2)
var c uint
for i := 0; i < n; i++ {
d := bLimbs[i]
c1 := addMulVVW2048(&T[i], &aLimbs[0], d)
Y := T[i] * m.m0inv
c2 := addMulVVW2048(&T[i], &mLimbs[0], Y)
T[n+i], c = bits.Add(c1, c2, c)
}
copy(x.reset(n).limbs, T[n:])
x.maybeSubtractModulus(choice(c), m)
}
return x
}
// addMulVVW multiplies the multi-word value x by the single-word value y,
// adding the result to the multi-word value z and returning the final carry.
// It can be thought of as one row of a pen-and-paper column multiplication.
//
//go:norace
func addMulVVW(z, x []uint, y uint) (carry uint) {
_ = x[len(z)-1] // bounds check elimination hint
for i := range z {
hi, lo := bits.Mul(x[i], y)
lo, c := bits.Add(lo, z[i], 0)
// We use bits.Add with zero to get an add-with-carry instruction that
// absorbs the carry from the previous bits.Add.
hi, _ = bits.Add(hi, 0, c)
lo, c = bits.Add(lo, carry, 0)
hi, _ = bits.Add(hi, 0, c)
carry = hi
z[i] = lo
}
return carry
}
// Mul calculates x = x * y mod m.
//
// The length of both operands must be the same as the modulus. Both operands
// must already be reduced modulo m.
//
//go:norace
func (x *Nat) Mul(y *Nat, m *Modulus) *Nat {
if m.odd {
// A Montgomery multiplication by a value out of the Montgomery domain
// takes the result out of Montgomery representation.
xR := NewNat().set(x).montgomeryRepresentation(m) // xR = x * R mod m
return x.montgomeryMul(xR, y, m) // x = xR * y / R mod m
}
n := len(m.nat.limbs)
xLimbs := x.limbs[:n]
yLimbs := y.limbs[:n]
switch n {
default:
// Attempt to use a stack-allocated backing array.
T := make([]uint, 0, preallocLimbs*2)
if cap(T) < n*2 {
T = make([]uint, 0, n*2)
}
T = T[:n*2]
// T = x * y
for i := 0; i < n; i++ {
T[n+i] = addMulVVW(T[i:n+i], xLimbs, yLimbs[i])
}
// x = T mod m
return x.Mod(&Nat{limbs: T}, m)
// The following specialized cases follow the exact same algorithm, but
// optimized for the sizes most used in RSA. See montgomeryMul for details.
case 256 / _W: // optimization for 256 bits nat
const n = 256 / _W // compiler hint
T := make([]uint, n*2)
for i := 0; i < n; i++ {
T[n+i] = addMulVVW256(&T[i], &xLimbs[0], yLimbs[i])
}
return x.Mod(&Nat{limbs: T}, m)
case 1024 / _W:
const n = 1024 / _W // compiler hint
T := make([]uint, n*2)
for i := 0; i < n; i++ {
T[n+i] = addMulVVW1024(&T[i], &xLimbs[0], yLimbs[i])
}
return x.Mod(&Nat{limbs: T}, m)
case 1536 / _W:
const n = 1536 / _W // compiler hint
T := make([]uint, n*2)
for i := 0; i < n; i++ {
T[n+i] = addMulVVW1536(&T[i], &xLimbs[0], yLimbs[i])
}
return x.Mod(&Nat{limbs: T}, m)
case 2048 / _W:
const n = 2048 / _W // compiler hint
T := make([]uint, n*2)
for i := 0; i < n; i++ {
T[n+i] = addMulVVW2048(&T[i], &xLimbs[0], yLimbs[i])
}
return x.Mod(&Nat{limbs: T}, m)
}
}
// Exp calculates out = x^e mod m.
//
// The exponent e is represented in big-endian order. The output will be resized
// to the size of m and overwritten. x must already be reduced modulo m.
//
// m must be odd, or Exp will panic.
//
//go:norace
func (out *Nat) Exp(x *Nat, e []byte, m *Modulus) *Nat {
if !m.odd {
panic("bigmod: modulus for Exp must be odd")
}
// We use a 4 bit window. For our RSA workload, 4 bit windows are faster
// than 2 bit windows, but use an extra 12 nats worth of scratch space.
// Using bit sizes that don't divide 8 are more complex to implement, but
// are likely to be more efficient if necessary.
table := [(1 << 4) - 1]*Nat{ // table[i] = x ^ (i+1)
// newNat calls are unrolled so they are allocated on the stack.
NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
}
table[0].set(x).montgomeryRepresentation(m)
for i := 1; i < len(table); i++ {
table[i].montgomeryMul(table[i-1], table[0], m)
}
out.resetFor(m)
out.limbs[0] = 1
out.montgomeryRepresentation(m)
tmp := NewNat().ExpandFor(m)
for _, b := range e {
for _, j := range []int{4, 0} {
// Square four times. Optimization note: this can be implemented
// more efficiently than with generic Montgomery multiplication.
out.montgomeryMul(out, out, m)
out.montgomeryMul(out, out, m)
out.montgomeryMul(out, out, m)
out.montgomeryMul(out, out, m)
// Select x^k in constant time from the table.
k := uint((b >> j) & 0b1111)
for i := range table {
tmp.assign(ctEq(k, uint(i+1)), table[i])
}
// Multiply by x^k, discarding the result if k = 0.
tmp.montgomeryMul(out, tmp, m)
out.assign(not(ctEq(k, 0)), tmp)
}
}
return out.montgomeryReduction(m)
}
// ExpShortVarTime calculates out = x^e mod m.
//
// The output will be resized to the size of m and overwritten. x must already
// be reduced modulo m. This leaks the exponent through timing side-channels.
//
// m must be odd, or ExpShortVarTime will panic.
func (out *Nat) ExpShortVarTime(x *Nat, e uint, m *Modulus) *Nat {
if !m.odd {
panic("bigmod: modulus for ExpShortVarTime must be odd")
}
// For short exponents, precomputing a table and using a window like in Exp
// doesn't pay off. Instead, we do a simple conditional square-and-multiply
// chain, skipping the initial run of zeroes.
xR := NewNat().set(x).montgomeryRepresentation(m)
out.set(xR)
for i := bits.UintSize - bits.Len(e) + 1; i < bits.UintSize; i++ {
out.montgomeryMul(out, out, m)
if k := (e >> (bits.UintSize - i - 1)) & 1; k != 0 {
out.montgomeryMul(out, xR, m)
}
}
return out.montgomeryReduction(m)
}
// InverseVarTime calculates x = a⁻¹ mod m and returns (x, true) if a is
// invertible. Otherwise, InverseVarTime returns (x, false) and x is not
// modified.
//
// a must be reduced modulo m, but doesn't need to have the same size. The
// output will be resized to the size of m and overwritten.
//
//go:norace
func (x *Nat) InverseVarTime(a *Nat, m *Modulus) (*Nat, bool) {
// This is the extended binary GCD algorithm described in the Handbook of
// Applied Cryptography, Algorithm 14.61, adapted by BoringSSL to bound
// coefficients and avoid negative numbers. For more details and proof of
// correctness, see https://github.com/mit-plv/fiat-crypto/pull/333/files.
//
// Following the proof linked in the PR above, the changes are:
//
// 1. Negate [B] and [C] so they are positive. The invariant now involves a
// subtraction.
// 2. If step 2 (both [x] and [y] are even) runs, abort immediately. This
// algorithm only cares about [x] and [y] relatively prime.
// 3. Subtract copies of [x] and [y] as needed in step 6 (both [u] and [v]
// are odd) so coefficients stay in bounds.
// 4. Replace the [u >= v] check with [u > v]. This changes the end
// condition to [v = 0] rather than [u = 0]. This saves an extra
// subtraction due to which coefficients were negated.
// 5. Rename x and y to a and n, to capture that one is a modulus.
// 6. Rearrange steps 4 through 6 slightly. Merge the loops in steps 4 and
// 5 into the main loop (step 7's goto), and move step 6 to the start of
// the loop iteration, ensuring each loop iteration halves at least one
// value.
//
// Note this algorithm does not handle either input being zero.
if a.IsZero() == yes {
return x, false
}
if a.IsOdd() == no && !m.odd {
// a and m are not coprime, as they are both even.
return x, false
}
u := NewNat().set(a).ExpandFor(m)
v := m.Nat()
A := NewNat().reset(len(m.nat.limbs))
A.limbs[0] = 1
B := NewNat().reset(len(a.limbs))
C := NewNat().reset(len(m.nat.limbs))
D := NewNat().reset(len(a.limbs))
D.limbs[0] = 1
// Before and after each loop iteration, the following hold:
//
// u = A*a - B*m
// v = D*m - C*a
// 0 < u <= a
// 0 <= v <= m
// 0 <= A < m
// 0 <= B <= a
// 0 <= C < m
// 0 <= D <= a
//
// After each loop iteration, u and v only get smaller, and at least one of
// them shrinks by at least a factor of two.
for {
// If both u and v are odd, subtract the smaller from the larger.
// If u = v, we need to subtract from v to hit the modified exit condition.
if u.IsOdd() == yes && v.IsOdd() == yes {
if v.cmpGeq(u) == no {
u.sub(v)
A.Add(C, m)
B.Add(D, &Modulus{nat: a})
} else {
v.sub(u)
C.Add(A, m)
D.Add(B, &Modulus{nat: a})
}
}
// Exactly one of u and v is now even.
if u.IsOdd() == v.IsOdd() {
panic("bigmod: internal error: u and v are not in the expected state")
}
// Halve the even one and adjust the corresponding coefficient.
if u.IsOdd() == no {
rshift1(u, 0)
if A.IsOdd() == yes || B.IsOdd() == yes {
rshift1(A, A.add(m.nat))
rshift1(B, B.add(a))
} else {
rshift1(A, 0)
rshift1(B, 0)
}
} else { // v.IsOdd() == no
rshift1(v, 0)
if C.IsOdd() == yes || D.IsOdd() == yes {
rshift1(C, C.add(m.nat))
rshift1(D, D.add(a))
} else {
rshift1(C, 0)
rshift1(D, 0)
}
}
if v.IsZero() == yes {
if u.IsOne() == no {
return x, false
}
return x.set(A), true
}
}
}
//go:norace
func rshift1(a *Nat, carry uint) {
size := len(a.limbs)
aLimbs := a.limbs[:size]
for i := 0; i < size; i++ {
aLimbs[i] >>= 1
if i+1 < size {
aLimbs[i] |= aLimbs[i+1] << (_W - 1)
} else {
aLimbs[i] |= carry << (_W - 1)
}
}
}