gmsm/internal/sm9/bn256/gfp2_g1_generic.go

167 lines
4.9 KiB
Go
Raw Normal View History

//go:build purego || plugin || !(amd64 || arm64)
package bn256
func gfp2Mul(c, a, b *gfP2) {
tmp := &gfP2{}
tx := &tmp.x
ty := &tmp.y
v0, v1 := &gfP{}, &gfP{}
gfpMul(v0, &a.y, &b.y)
gfpMul(v1, &a.x, &b.x)
gfpAdd(tx, &a.x, &a.y)
gfpAdd(ty, &b.x, &b.y)
gfpMul(tx, tx, ty)
gfpSub(tx, tx, v0)
gfpSub(tx, tx, v1)
gfpSub(ty, v0, v1)
gfpSub(ty, ty, v1)
gfp2Copy(c, tmp)
}
func gfp2MulU(c, a, b *gfP2) {
tmp := &gfP2{}
tx := &tmp.x
ty := &tmp.y
v0, v1 := &gfP{}, &gfP{}
gfpMul(v0, &a.y, &b.y)
gfpMul(v1, &a.x, &b.x)
gfpAdd(tx, &a.x, &a.y)
gfpAdd(ty, &b.x, &b.y)
gfpMul(ty, tx, ty)
gfpSub(ty, ty, v0)
gfpSub(ty, ty, v1)
gfpDouble(ty, ty)
gfpNeg(ty, ty)
gfpSub(tx, v0, v1)
gfpSub(tx, tx, v1)
gfp2Copy(c, tmp)
}
func gfp2MulU1(c, a *gfP2) {
t := &gfP{}
gfpDouble(t, &a.x)
gfpNeg(t, t)
gfpCopy(&c.x, &a.y)
gfpCopy(&c.y, t)
}
func gfp2Square(c, a *gfP2) {
tmp := &gfP2{}
tx := &tmp.x
ty := &tmp.y
gfpAdd(ty, &a.x, &a.y)
gfpDouble(tx, &a.x)
gfpSub(tx, &a.y, tx)
gfpMul(ty, tx, ty)
gfpMul(tx, &a.x, &a.y)
gfpAdd(ty, tx, ty)
gfpDouble(tx, tx)
gfp2Copy(c, tmp)
}
func gfp2SquareU(c, a *gfP2) {
tmp := &gfP2{}
tx := &tmp.x
ty := &tmp.y
gfpAdd(tx, &a.x, &a.y)
gfpDouble(ty, &a.x)
gfpSub(ty, &a.y, ty)
gfpMul(tx, tx, ty)
gfpMul(ty, &a.x, &a.y)
gfpAdd(tx, tx, ty)
gfpDouble(ty, ty)
gfpDouble(ty, ty)
gfpNeg(ty, ty)
gfp2Copy(c, tmp)
}
func curvePointDoubleComplete(c, p *curvePoint) {
// Complete addition formula for a = 0 from "Complete addition formulas for
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §3.2.
// Algorithm 9: Exception-free point doubling for prime order j-invariant 0 short Weierstrass curves.
t0, t1, t2 := new(gfP), new(gfP), new(gfP)
x3, y3, z3 := new(gfP), new(gfP), new(gfP)
gfpSqr(t0, &p.y, 1) // t0 := Y^2
gfpDouble(z3, t0) // Z3 := t0 + t0
gfpDouble(z3, z3) // Z3 := Z3 + Z3
gfpDouble(z3, z3) // Z3 := Z3 + Z3
gfpMul(t1, &p.y, &p.z) // t1 := YZ
gfpSqr(t2, &p.z, 1) // t2 := Z^2
gfpMul(t2, threeCurveB, t2) // t2 := 3b * t2 = 3bZ^2
gfpMul(x3, t2, z3) // X3 := t2 * Z3
gfpAdd(y3, t0, t2) // Y3 := t0 + t2
gfpMul(z3, t1, z3) // Z3 := t1 * Z3
gfpTriple(t2, t2) // t2 := t2 + t2 + t2
gfpSub(t0, t0, t2) // t0 := t0 - t2
gfpMul(y3, t0, y3) // Y3 := t0 * Y3
gfpAdd(y3, x3, y3) // Y3 := X3 + Y3
gfpMul(t1, &p.x, &p.y) // t1 := XY
gfpMul(x3, t0, t1) // X3 := t0 * t1
gfpDouble(x3, x3) // X3 := X3 + X3
c.x.Set(x3)
c.y.Set(y3)
c.z.Set(z3)
}
func curvePointAddComplete(c, p1, p2 *curvePoint) {
// Complete addition formula for a = 0 from "Complete addition formulas for
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §3.2.
// Algorithm 7: Complete, projective point addition for prime order j-invariant 0 short Weierstrass curves.
t0, t1, t2, t3, t4 := new(gfP), new(gfP), new(gfP), new(gfP), new(gfP)
x3, y3, z3 := new(gfP), new(gfP), new(gfP)
gfpMul(t0, &p1.x, &p2.x) // t0 := X1X2
gfpMul(t1, &p1.y, &p2.y) // t1 := Y1Y2
gfpMul(t2, &p1.z, &p2.z) // t2 := Z1Z2
gfpAdd(t3, &p1.x, &p1.y) // t3 := X1 + Y1
gfpAdd(t4, &p2.x, &p2.y) // t4 := X2 + Y2
gfpMul(t3, t3, t4) // t3 := t3 * t4 = (X1 + Y1) * (X2 + Y2)
gfpAdd(t4, t0, t1) // t4 := t0 + t1
gfpSub(t3, t3, t4) // t3 := t3 - t4 = X1Y2 + X2Y1
gfpAdd(t4, &p1.y, &p1.z) // t4 := Y1 + Z1
gfpAdd(x3, &p2.y, &p2.z) // X3 := Y2 + Z2
gfpMul(t4, t4, x3) // t4 := t4 * X3 = (Y1 + Z1)(Y2 + Z2)
gfpAdd(x3, t1, t2) // X3 := t1 + t2
gfpSub(t4, t4, x3) // t4 := t4 - X3 = Y1Z2 + Y2Z1
gfpAdd(x3, &p1.x, &p1.z) // X3 := X1 + Z1
gfpAdd(y3, &p2.x, &p2.z) // Y3 := X2 + Z2
gfpMul(x3, x3, y3) // X3 := X3 * Y3
gfpAdd(y3, t0, t2) // Y3 := t0 + t2
gfpSub(y3, x3, y3) // Y3 := X3 - Y3 = X1Z2 + X2Z1
gfpTriple(t0, t0) // t0 := t0 + t0 + t0 = 3X1X2
gfpMul(t2, threeCurveB, t2) // t2 := 3b * t2 = 3bZ1Z2
gfpAdd(z3, t1, t2) // Z3 := t1 + t2 = Y1Y2 + 3bZ1Z2
gfpSub(t1, t1, t2) // t1 := t1 - t2 = Y1Y2 - 3bZ1Z2
gfpMul(y3, threeCurveB, y3) // Y3 = 3b * Y3 = 3b(X1Z2 + X2Z1)
gfpMul(x3, t4, y3) // X3 := t4 * Y3 = 3b(X1Z2 + X2Z1)(Y1Z2 + Y2Z1)
gfpMul(t2, t3, t1) // t2 := t3 * t1 = (X1Y2 + X2Y1)(Y1Y2 - 3bZ1Z2)
gfpSub(x3, t2, x3) // X3 := t2 - X3 = (X1Y2 + X2Y1)(Y1Y2 - 3bZ1Z2) - 3b(Y1Z2 + Y2Z1)(X1Z2 + X2Z1)
gfpMul(y3, y3, t0) // Y3 := Y3 * t0 = 9bX1X2(X1Z2 + X2Z1)
gfpMul(t1, t1, z3) // t1 := t1 * Z3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 - 3bZ1Z2)
gfpAdd(y3, t1, y3) // Y3 := t1 + Y3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 - 3bZ1Z2) + 9bX1X2(X1Z2 + X2Z1)
gfpMul(t0, t0, t3) // t0 := t0 * t3 = 3X1X2(X1Y2 + X2Y1)
gfpMul(z3, z3, t4) // Z3 := Z3 * t4 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2)
gfpAdd(z3, z3, t0) // Z3 := Z3 + t0 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2) + 3X1X2(X1Y2 + X2Y1)
c.x.Set(x3)
c.y.Set(y3)
c.z.Set(z3)
}