gmsm/sm9/bn256/gfp_invert.go

222 lines
4.7 KiB
Go
Raw Normal View History

// Code generated by addchain. DO NOT EDIT.
package bn256
// Invert sets e = 1/x, and returns e.
//
// If x == 0, Invert returns e = 0.
func (e *gfP) Invert(x *gfP) *gfP {
// Inversion is implemented as exponentiation with exponent p 2.
// The sequence of 56 multiplications and 250 squarings is derived from the
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
//
// _10 = 2*1
// _100 = 2*_10
// _110 = _10 + _100
// _1010 = _100 + _110
// _1011 = 1 + _1010
// _1101 = _10 + _1011
// _10000 = _110 + _1010
// _10101 = _1010 + _1011
// _11011 = _110 + _10101
// _11101 = _10 + _11011
// _11111 = _10 + _11101
// _101001 = _1010 + _11111
// _101011 = _10 + _101001
// _111011 = _10000 + _101011
// _1000101 = _1010 + _111011
// _1001111 = _1010 + _1000101
// _1010001 = _10 + _1001111
// _1011011 = _1010 + _1010001
// _1011101 = _10 + _1011011
// _1011111 = _10 + _1011101
// _1100011 = _100 + _1011111
// _1101001 = _110 + _1100011
// _1101101 = _100 + _1101001
// _1101111 = _10 + _1101101
// _1110101 = _110 + _1101111
// _1111011 = _110 + _1110101
// _10110110 = _111011 + _1111011
// i72 = ((_10110110 << 2 + 1) << 33 + _10101) << 8
// i94 = ((_11101 + i72) << 9 + _1101111) << 10 + _1110101
// i116 = ((2*i94 + 1) << 14 + _1110101) << 5
// i129 = 2*((_1101 + i116) << 9 + _1111011 + _100)
// i146 = ((1 + i129) << 5 + _1011) << 9 + _111011
// i174 = ((i146 << 8 + _11101) << 9 + _101001) << 9
// i194 = ((_11111 + i174) << 8 + _101001) << 9 + _1101001
// i220 = ((i194 << 8 + _1100011) << 8 + _1001111) << 8
// i237 = ((_1011101 + i220) << 7 + _1101101) << 7 + _1011111
// i260 = ((i237 << 8 + _101011) << 6 + _11111) << 7
// i279 = ((_11011 + i260) << 9 + _1001111) << 7 + _1100011
// i305 = ((i279 << 8 + _1010001) << 8 + _1000101) << 8
// return _1111011 + i305
//
var z = new(gfP).Set(e)
var t0 = new(gfP)
var t1 = new(gfP)
var t2 = new(gfP)
var t3 = new(gfP)
var t4 = new(gfP)
var t5 = new(gfP)
var t6 = new(gfP)
var t7 = new(gfP)
var t8 = new(gfP)
var t9 = new(gfP)
var t10 = new(gfP)
var t11 = new(gfP)
var t12 = new(gfP)
var t13 = new(gfP)
var t14 = new(gfP)
var t15 = new(gfP)
var t16 = new(gfP)
var t17 = new(gfP)
var t18 = new(gfP)
var t19 = new(gfP)
var t20 = new(gfP)
t17.Square(x)
t15.Square(t17)
z.Mul(t17, t15)
t2.Mul(t15, z)
t14.Mul(x, t2)
t16.Mul(t17, t14)
t0.Mul(z, t2)
t19.Mul(t2, t14)
t4.Mul(z, t19)
t12.Mul(t17, t4)
t5.Mul(t17, t12)
t11.Mul(t2, t5)
t6.Mul(t17, t11)
t13.Mul(t0, t6)
t0.Mul(t2, t13)
t3.Mul(t2, t0)
t1.Mul(t17, t3)
t2.Mul(t2, t1)
t9.Mul(t17, t2)
t7.Mul(t17, t9)
t2.Mul(t15, t7)
t10.Mul(z, t2)
t8.Mul(t15, t10)
t18.Mul(t17, t8)
t17.Mul(z, t18)
z.Mul(z, t17)
t20.Mul(t13, z)
for s := 0; s < 2; s++ {
t20.Square(t20)
}
t20.Mul(x, t20)
for s := 0; s < 33; s++ {
t20.Square(t20)
}
t19.Mul(t19, t20)
for s := 0; s < 8; s++ {
t19.Square(t19)
}
t19.Mul(t12, t19)
for s := 0; s < 9; s++ {
t19.Square(t19)
}
t18.Mul(t18, t19)
for s := 0; s < 10; s++ {
t18.Square(t18)
}
t18.Mul(t17, t18)
t18.Square(t18)
t18.Mul(x, t18)
for s := 0; s < 14; s++ {
t18.Square(t18)
}
t17.Mul(t17, t18)
for s := 0; s < 5; s++ {
t17.Square(t17)
}
t16.Mul(t16, t17)
for s := 0; s < 9; s++ {
t16.Square(t16)
}
t16.Mul(z, t16)
t15.Mul(t15, t16)
t15.Square(t15)
t15.Mul(x, t15)
for s := 0; s < 5; s++ {
t15.Square(t15)
}
t14.Mul(t14, t15)
for s := 0; s < 9; s++ {
t14.Square(t14)
}
t13.Mul(t13, t14)
for s := 0; s < 8; s++ {
t13.Square(t13)
}
t12.Mul(t12, t13)
for s := 0; s < 9; s++ {
t12.Square(t12)
}
t12.Mul(t11, t12)
for s := 0; s < 9; s++ {
t12.Square(t12)
}
t12.Mul(t5, t12)
for s := 0; s < 8; s++ {
t12.Square(t12)
}
t11.Mul(t11, t12)
for s := 0; s < 9; s++ {
t11.Square(t11)
}
t10.Mul(t10, t11)
for s := 0; s < 8; s++ {
t10.Square(t10)
}
t10.Mul(t2, t10)
for s := 0; s < 8; s++ {
t10.Square(t10)
}
t10.Mul(t3, t10)
for s := 0; s < 8; s++ {
t10.Square(t10)
}
t9.Mul(t9, t10)
for s := 0; s < 7; s++ {
t9.Square(t9)
}
t8.Mul(t8, t9)
for s := 0; s < 7; s++ {
t8.Square(t8)
}
t7.Mul(t7, t8)
for s := 0; s < 8; s++ {
t7.Square(t7)
}
t6.Mul(t6, t7)
for s := 0; s < 6; s++ {
t6.Square(t6)
}
t5.Mul(t5, t6)
for s := 0; s < 7; s++ {
t5.Square(t5)
}
t4.Mul(t4, t5)
for s := 0; s < 9; s++ {
t4.Square(t4)
}
t3.Mul(t3, t4)
for s := 0; s < 7; s++ {
t3.Square(t3)
}
t2.Mul(t2, t3)
for s := 0; s < 8; s++ {
t2.Square(t2)
}
t1.Mul(t1, t2)
for s := 0; s < 8; s++ {
t1.Square(t1)
}
t0.Mul(t0, t1)
for s := 0; s < 8; s++ {
t0.Square(t0)
}
z.Mul(z, t0)
return e.Set(z)
}