gmsm/cipher/hctr.go

213 lines
6.2 KiB
Go
Raw Normal View History

2023-12-01 15:51:15 +08:00
package cipher
import (
_cipher "crypto/cipher"
"encoding/binary"
"errors"
"github.com/emmansun/gmsm/internal/alias"
"github.com/emmansun/gmsm/internal/subtle"
)
// A LengthPreservingMode represents a block cipher running in a length preserving mode (HCTR,
// HCTR2 etc).
type LengthPreservingMode interface {
// Encrypt encrypts a number of plaintext bytes. The length of
// src must be NOT smaller than block size. Dst and src must overlap
// entirely or not at all.
//
// If len(dst) < len(src), Encrypt should panic. It is acceptable
// to pass a dst bigger than src, and in that case, Encrypt will
// only update dst[:len(src)] and will not touch the rest of dst.
//
// Multiple calls to Encrypt behave NOT same as if the concatenation of
// the src buffers was passed in a single run.
Encrypt(dst, src []byte)
// Decrypt decrypts a number of ciphertext bytes. The length of
// src must be NOT smaller than block size. Dst and src must overlap
// entirely or not at all.
//
// If len(dst) < len(src), Decrypt should panic. It is acceptable
// to pass a dst bigger than src, and in that case, Decrypt will
// only update dst[:len(src)] and will not touch the rest of dst.
//
// Multiple calls to Decrypt behave NOT same as if the concatenation of
// the src buffers was passed in a single run.
Decrypt(dst, src []byte)
}
// hctr represents a Varaible-Input-Length enciphering mode with a specific block cipher,
// and specific tweak and a hash key. See
// https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288
// GB/T 17964-2021 第11章 带泛杂凑函数的计数器工作模式
type hctr struct {
cipher _cipher.Block
tweak [blockSize]byte
hkey [blockSize]byte
}
// NewHCTR returns a [LengthPreservingMode] which encrypts/decrypts useing the given [Block]
// in HCTR mode. The lenght of tweak and hash key must be the same as the [Block]'s block size.
func NewHCTR(cipher _cipher.Block, tweak, hkey []byte) (LengthPreservingMode, error) {
if len(tweak) != blockSize || len(hkey) != blockSize {
return nil, errors.New("hctr: invalid tweak and/or hash key length")
}
c := &hctr{}
c.cipher = cipher
copy(c.hkey[:], hkey)
copy(c.tweak[:], tweak)
return c, nil
}
func _mul2(v *[blockSize]byte) {
var carryIn byte
for j := range v {
carryOut := (v[j] << 7) & 0x80
v[j] = (v[j] >> 1) + carryIn
carryIn = carryOut
}
if carryIn != 0 {
v[0] ^= 0xE1 // 1<<7 | 1<<6 | 1<<5 | 1
}
}
// mul sets y to y*hkey.
func (h *hctr) mul(y *[blockSize]byte) {
var z [blockSize]byte
for _, i := range h.hkey {
for k := 0; k < 8; k++ {
if (i>>(7-k))&1 == 1 {
subtle.XORBytes(z[:], z[:], y[:])
}
_mul2(y)
}
}
copy(y[:], z[:])
}
// Universal Hash Function.
// Chapter 3.3 in https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288.
func (h *hctr) uhash(m []byte, dst *[blockSize]byte) {
for k := 0; k < blockSize; k++ {
dst[k] = 0
}
msg := m
for len(msg) >= blockSize {
subtle.XORBytes(dst[:], dst[:], msg[:blockSize])
h.mul(dst)
msg = msg[blockSize:]
}
var v [blockSize]byte
if len(msg) > 0 {
copy(v[:], msg)
copy(v[len(msg):], h.tweak[:])
subtle.XORBytes(dst[:], dst[:], v[:])
h.mul(dst)
copy(v[:], h.tweak[len(msg):])
for i := len(msg); i < blockSize; i++ {
v[i] = 0
}
subtle.XORBytes(dst[:], dst[:], v[:])
h.mul(dst)
for i := 0; i < len(msg); i++ {
v[i] = 0
}
} else {
subtle.XORBytes(dst[:], dst[:], h.tweak[:])
h.mul(dst)
}
// (|M|)₂
binary.BigEndian.PutUint64(v[8:], uint64(len(m)+blockSize)<<3)
subtle.XORBytes(dst[:], dst[:], v[:])
h.mul(dst)
}
func (h *hctr) Encrypt(ciphertext, plaintext []byte) {
if len(ciphertext) < len(plaintext) {
panic("hctr: ciphertext is smaller than plaintext")
}
if len(plaintext) < blockSize {
panic("hctr: plaintext length is smaller than the block size")
}
if alias.InexactOverlap(ciphertext[:len(plaintext)], plaintext) {
panic("hctr: invalid buffer overlap")
}
var z1, z2 [blockSize]byte
// a) z1 generation
h.uhash(plaintext[blockSize:], &z1)
subtle.XORBytes(z1[:], z1[:], plaintext[:blockSize])
// b) z2 generation
h.cipher.Encrypt(z2[:], z1[:])
// c) CTR
subtle.XORBytes(z1[:], z1[:], z2[:])
h.ctr(ciphertext[blockSize:], plaintext[blockSize:], &z1)
// d) first ciphertext block generation
h.uhash(ciphertext[blockSize:], &z1)
subtle.XORBytes(ciphertext, z2[:], z1[:])
}
func (h *hctr) Decrypt(plaintext, ciphertext []byte) {
if len(plaintext) < len(ciphertext) {
panic("hctr: plaintext is smaller than cihpertext")
}
if len(ciphertext) < blockSize {
panic("hctr: ciphertext length is smaller than the block size")
}
if alias.InexactOverlap(plaintext[:len(ciphertext)], ciphertext) {
panic("hctr: invalid buffer overlap")
}
var z1, z2 [blockSize]byte
// a) z2 generation
h.uhash(ciphertext[blockSize:], &z2)
subtle.XORBytes(z2[:], z2[:], ciphertext[:blockSize])
// b) z1 generation
h.cipher.Decrypt(z1[:], z2[:])
// c) CTR
subtle.XORBytes(z2[:], z2[:], z1[:])
h.ctr(plaintext[blockSize:], ciphertext[blockSize:], &z2)
// d) first plaintext block generation
h.uhash(plaintext[blockSize:], &z2)
subtle.XORBytes(plaintext, z2[:], z1[:])
}
func (h *hctr) ctr(dst, src []byte, baseCtr *[blockSize]byte) {
ctr := make([]byte, blockSize)
num := make([]byte, blockSize)
i := uint64(1)
if concCipher, ok := h.cipher.(concurrentBlocks); ok {
batchSize := concCipher.Concurrency() * blockSize
if len(src) >= batchSize {
var ctrs []byte = make([]byte, batchSize)
for len(src) >= batchSize {
for j := 0; j < concCipher.Concurrency(); j++ {
// (i)₂
binary.BigEndian.PutUint64(num[blockSize-8:], i)
subtle.XORBytes(ctrs[j*blockSize:], baseCtr[:], num)
i++
}
concCipher.EncryptBlocks(ctrs, ctrs)
subtle.XORBytes(dst, src, ctrs)
src = src[batchSize:]
dst = dst[batchSize:]
}
}
}
for len(src) > 0 {
// (i)₂
binary.BigEndian.PutUint64(num[blockSize-8:], i)
subtle.XORBytes(ctr, baseCtr[:], num)
h.cipher.Encrypt(ctr, ctr)
n := subtle.XORBytes(dst, src, ctr)
src = src[n:]
dst = dst[n:]
i++
}
}