2022-07-15 16:42:39 +08:00
|
|
|
|
// Copyright 2021 The Go Authors. All rights reserved.
|
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
// Code generated by addchain. DO NOT EDIT.
|
|
|
|
|
package fiat
|
|
|
|
|
|
|
|
|
|
// Invert sets e = 1/x, and returns e.
|
|
|
|
|
//
|
|
|
|
|
// If x == 0, Invert returns e = 0.
|
|
|
|
|
func (e *SM2P256Element) Invert(x *SM2P256Element) *SM2P256Element {
|
|
|
|
|
// Inversion is implemented as exponentiation with exponent p − 2.
|
|
|
|
|
// The sequence of 14 multiplications and 255 squarings is derived from the
|
|
|
|
|
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
|
|
|
|
//
|
|
|
|
|
// _10 = 2*1
|
|
|
|
|
// _11 = 1 + _10
|
|
|
|
|
// _110 = 2*_11
|
|
|
|
|
// _111 = 1 + _110
|
|
|
|
|
// _111000 = _111 << 3
|
|
|
|
|
// _111111 = _111 + _111000
|
|
|
|
|
// _1111110 = 2*_111111
|
|
|
|
|
// _1111111 = 1 + _1111110
|
|
|
|
|
// x12 = _1111110 << 5 + _111111
|
|
|
|
|
// x24 = x12 << 12 + x12
|
|
|
|
|
// x31 = x24 << 7 + _1111111
|
|
|
|
|
// i39 = x31 << 2
|
|
|
|
|
// i68 = i39 << 29
|
|
|
|
|
// x62 = x31 + i68
|
|
|
|
|
// i71 = i68 << 2
|
|
|
|
|
// x64 = i39 + i71 + _11
|
|
|
|
|
// i265 = ((i71 << 32 + x64) << 64 + x64) << 94
|
|
|
|
|
// return (x62 + i265) << 2 + 1
|
|
|
|
|
//
|
|
|
|
|
var z = new(SM2P256Element).Set(e)
|
|
|
|
|
var t0 = new(SM2P256Element)
|
|
|
|
|
var t1 = new(SM2P256Element)
|
|
|
|
|
var t2 = new(SM2P256Element)
|
|
|
|
|
|
|
|
|
|
z.Square(x)
|
|
|
|
|
t0.Mul(x, z)
|
|
|
|
|
z.Square(t0)
|
|
|
|
|
z.Mul(x, z)
|
|
|
|
|
t1.Square(z)
|
|
|
|
|
for s := 1; s < 3; s++ {
|
|
|
|
|
t1.Square(t1)
|
|
|
|
|
}
|
|
|
|
|
t1.Mul(z, t1)
|
|
|
|
|
t2.Square(t1)
|
|
|
|
|
z.Mul(x, t2)
|
|
|
|
|
for s := 0; s < 5; s++ {
|
|
|
|
|
t2.Square(t2)
|
|
|
|
|
}
|
|
|
|
|
t1.Mul(t1, t2)
|
|
|
|
|
t2.Square(t1)
|
|
|
|
|
for s := 1; s < 12; s++ {
|
|
|
|
|
t2.Square(t2)
|
|
|
|
|
}
|
|
|
|
|
t1.Mul(t1, t2)
|
|
|
|
|
for s := 0; s < 7; s++ {
|
|
|
|
|
t1.Square(t1)
|
|
|
|
|
}
|
|
|
|
|
z.Mul(z, t1)
|
|
|
|
|
t2.Square(z)
|
|
|
|
|
for s := 1; s < 2; s++ {
|
|
|
|
|
t2.Square(t2)
|
|
|
|
|
}
|
|
|
|
|
t1.Square(t2)
|
|
|
|
|
for s := 1; s < 29; s++ {
|
|
|
|
|
t1.Square(t1)
|
|
|
|
|
}
|
|
|
|
|
z.Mul(z, t1)
|
|
|
|
|
for s := 0; s < 2; s++ {
|
|
|
|
|
t1.Square(t1)
|
|
|
|
|
}
|
|
|
|
|
t2.Mul(t2, t1)
|
|
|
|
|
t0.Mul(t0, t2)
|
|
|
|
|
for s := 0; s < 32; s++ {
|
|
|
|
|
t1.Square(t1)
|
|
|
|
|
}
|
|
|
|
|
t1.Mul(t0, t1)
|
|
|
|
|
for s := 0; s < 64; s++ {
|
|
|
|
|
t1.Square(t1)
|
|
|
|
|
}
|
|
|
|
|
t0.Mul(t0, t1)
|
|
|
|
|
for s := 0; s < 94; s++ {
|
|
|
|
|
t0.Square(t0)
|
|
|
|
|
}
|
|
|
|
|
z.Mul(z, t0)
|
|
|
|
|
for s := 0; s < 2; s++ {
|
|
|
|
|
z.Square(z)
|
|
|
|
|
}
|
|
|
|
|
z.Mul(x, z)
|
|
|
|
|
return e.Set(z)
|
|
|
|
|
}
|