gmsm/sm9/bn256/gfp2.go

262 lines
4.9 KiB
Go
Raw Normal View History

2022-07-15 16:42:39 +08:00
package bn256
import (
"math/big"
)
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
// gfP2 implements a field of size p² as a quadratic extension of the base field
2023-04-28 11:25:09 +08:00
// where u²=-2, beta=-2.
2022-07-15 16:42:39 +08:00
type gfP2 struct {
2023-04-28 11:25:09 +08:00
x, y gfP // value is xu+y.
2022-07-15 16:42:39 +08:00
}
func gfP2Decode(in *gfP2) *gfP2 {
out := &gfP2{}
montDecode(&out.x, &in.x)
montDecode(&out.y, &in.y)
return out
}
func (e *gfP2) String() string {
return "(" + e.x.String() + ", " + e.y.String() + ")"
}
func (e *gfP2) Set(a *gfP2) *gfP2 {
gfp2Copy(e, a)
2022-07-15 16:42:39 +08:00
return e
}
func (e *gfP2) SetZero() *gfP2 {
e.x.Set(zero)
e.y.Set(zero)
2022-07-15 16:42:39 +08:00
return e
}
func (e *gfP2) SetOne() *gfP2 {
e.x.Set(zero)
e.y.Set(one)
2022-07-15 16:42:39 +08:00
return e
}
func (e *gfP2) SetU() *gfP2 {
e.x.Set(one)
e.y.Set(zero)
2022-07-15 16:42:39 +08:00
return e
}
func (e *gfP2) SetFrobConstant() *gfP2 {
e.x.Set(zero)
e.y.Set(frobConstant)
2022-07-15 16:42:39 +08:00
return e
}
func (e *gfP2) Equal(t *gfP2) int {
var acc uint64
for i := range e.x {
acc |= e.x[i] ^ t.x[i]
}
for i := range e.y {
acc |= e.y[i] ^ t.y[i]
}
return uint64IsZero(acc)
}
2022-07-15 16:42:39 +08:00
func (e *gfP2) IsZero() bool {
return (e.x.Equal(zero) == 1) && (e.y.Equal(zero) == 1)
2022-07-15 16:42:39 +08:00
}
func (e *gfP2) IsOne() bool {
return (e.x.Equal(zero) == 1) && (e.y.Equal(one) == 1)
2022-07-15 16:42:39 +08:00
}
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
e.y.Set(&a.y)
gfpNeg(&e.x, &a.x)
2022-07-15 16:42:39 +08:00
return e
}
func (e *gfP2) Neg(a *gfP2) *gfP2 {
gfpNeg(&e.x, &a.x)
gfpNeg(&e.y, &a.y)
2022-07-15 16:42:39 +08:00
return e
}
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
gfpAdd(&e.x, &a.x, &b.x)
gfpAdd(&e.y, &a.y, &b.y)
return e
}
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
gfpSub(&e.x, &a.x, &b.x)
gfpSub(&e.y, &a.y, &b.y)
return e
}
func (e *gfP2) Double(a *gfP2) *gfP2 {
gfpDouble(&e.x, &a.x)
gfpDouble(&e.y, &a.y)
2022-07-15 16:42:39 +08:00
return e
}
func (e *gfP2) Triple(a *gfP2) *gfP2 {
gfpTriple(&e.x, &a.x)
gfpTriple(&e.y, &a.y)
2022-07-15 16:42:39 +08:00
return e
}
// See "Multiplication and Squaring in Pairing-Friendly Fields",
// http://eprint.iacr.org/2006/471.pdf
// The Karatsuba method
// (a0+a1*u)(b0+b1*u)=c0+c1*u, where
// c0 = a0*b0 - 2a1*b1
// c1 = (a0 + a1)(b0 + b1) - a0*b0 - a1*b1 = a0*b1 + a1*b0
2022-07-15 16:42:39 +08:00
func (e *gfP2) Mul(a, b *gfP2) *gfP2 {
gfp2Mul(e, a, b)
return e
}
// MulU without value copy, will use e directly, so e can't be same as a and b.
2023-04-28 11:25:09 +08:00
// MulU: a * b * u
// (a0+a1*u)(b0+b1*u)*u=c0+c1*u, where
// c1 = (a0*b0 - 2a1*b1)u
// c0 = -2 * ((a0 + a1)(b0 + b1) - a0*b0 - a1*b1) = -2 * (a0*b1 + a1*b0)
func (e *gfP2) MulU(a, b *gfP2) *gfP2 {
gfp2MulU(e, a, b)
2022-07-15 16:42:39 +08:00
return e
}
2023-04-28 15:31:59 +08:00
// MulU1: a * u
// (a0+a1*u)u=c0+c1*u, where
// c1 = a0
// c0 = -2a1
2023-04-28 15:31:59 +08:00
func (e *gfP2) MulU1(a *gfP2) *gfP2 {
t := &gfP{}
gfpDouble(t, &a.x)
gfpNeg(t, t)
2023-04-28 15:31:59 +08:00
gfpCopy(&e.x, &a.y)
gfpCopy(&e.y, t)
2023-04-28 15:31:59 +08:00
return e
}
2022-07-15 16:42:39 +08:00
func (e *gfP2) Square(a *gfP2) *gfP2 {
// Complex squaring algorithm:
2023-04-28 11:25:09 +08:00
// (xu+y)² = y^2-2*x^2 + 2*u*x*y
gfp2Square(e, a)
2023-07-02 11:23:36 +08:00
return e
}
2022-07-15 16:42:39 +08:00
func (e *gfP2) SquareU(a *gfP2) *gfP2 {
// Complex squaring algorithm:
2023-04-28 11:25:09 +08:00
// (xu+y)²*u = (y^2-2*x^2)u - 4*x*y
gfp2SquareU(e, a)
2023-07-02 11:23:36 +08:00
return e
}
2022-07-15 16:42:39 +08:00
func (e *gfP2) MulScalar(a *gfP2, b *gfP) *gfP2 {
gfpMul(&e.x, &a.x, b)
gfpMul(&e.y, &a.y, b)
return e
}
func (e *gfP2) Invert(a *gfP2) *gfP2 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1, t2, t3 := &gfP{}, &gfP{}, &gfP{}
gfpSqr(t1, &a.x, 1)
gfpDouble(t3, t1)
gfpSqr(t2, &a.y, 1)
2022-07-15 16:42:39 +08:00
gfpAdd(t3, t3, t2)
inv := &gfP{}
inv.Invert(t3) // inv = (2 * a.x ^ 2 + a.y ^ 2) ^ (-1)
gfpNeg(t1, &a.x)
2022-07-15 16:42:39 +08:00
gfpMul(&e.x, t1, inv) // x = - a.x * inv
gfpMul(&e.y, &a.y, inv) // y = a.y * inv
return e
}
func (e *gfP2) Exp(f *gfP2, power *big.Int) *gfP2 {
sum := (&gfP2{}).SetOne()
t := &gfP2{}
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum)
if power.Bit(i) != 0 {
sum.Mul(t, f)
} else {
sum.Set(t)
}
}
e.Set(sum)
return e
}
2023-04-28 11:25:09 +08:00
// xu+y)^p = x * u^p + y
//
// = x * u * u^(p-1) + y
// = (-x)*u + y
//
2023-04-28 11:25:09 +08:00
// here u^(p-1) = -1
2022-07-15 16:42:39 +08:00
func (e *gfP2) Frobenius(a *gfP2) *gfP2 {
e.Conjugate(a)
return e
}
// Sqrt method is only required when we implement compressed format
2023-04-29 13:33:44 +08:00
// TODO: use addchain to improve performance for 3 exp operations.
2022-07-15 16:42:39 +08:00
func (ret *gfP2) Sqrt(a *gfP2) *gfP2 {
// Algorithm 10 https://eprint.iacr.org/2012/685.pdf
// TODO
ret.SetZero()
c := &twistGen.x
b, b2, bq := &gfP2{}, &gfP2{}, &gfP2{}
2023-04-29 13:33:44 +08:00
b = b.expPMinus1Over4(a)
2022-07-15 16:42:39 +08:00
b2.Mul(b, b)
2023-04-29 13:33:44 +08:00
bq = bq.expP(b)
2022-07-15 16:42:39 +08:00
t := &gfP2{}
x0 := &gfP{}
/* ignore sqrt existing check
a0 := &gfP2{}
a0.Exp(b2, p)
a0.Mul(a0, b2)
a0 = gfP2Decode(a0)
*/
t.Mul(bq, b)
if t.x.Equal(zero) == 1 && t.y.Equal(one) == 1 {
2022-07-15 16:42:39 +08:00
t.Mul(b2, a)
x0.Sqrt(&t.y)
t.MulScalar(bq, x0)
ret.Set(t)
} else {
d, e, f := &gfP2{}, &gfP2{}, &gfP2{}
2023-04-29 13:33:44 +08:00
d = d.expPMinus1Over2(c)
2022-07-15 16:42:39 +08:00
e.Mul(d, c)
f.Square(e)
e.Invert(e)
t.Mul(b2, a)
t.Mul(t, f)
x0.Sqrt(&t.y)
t.MulScalar(bq, x0)
t.Mul(t, e)
ret.Set(t)
}
return ret
}
// Select sets e to p1 if cond == 1, and to p2 if cond == 0.
func (e *gfP2) Select(p1, p2 *gfP2, cond int) *gfP2 {
e.x.Select(&p1.x, &p2.x, cond)
e.y.Select(&p1.y, &p2.y, cond)
return e
}