gmsm/sm9/sm9.go

631 lines
18 KiB
Go
Raw Normal View History

2022-07-15 16:42:39 +08:00
// Package sm9 handle shangmi sm9 algorithm and its curves and pairing implementation
package sm9
import (
"crypto"
2022-08-18 14:49:35 +08:00
goSubtle "crypto/subtle"
2022-07-15 16:42:39 +08:00
"encoding/binary"
"errors"
"fmt"
"io"
"math/big"
2022-08-18 14:49:35 +08:00
"github.com/emmansun/gmsm/internal/subtle"
2022-08-25 11:48:41 +08:00
"github.com/emmansun/gmsm/kdf"
2022-07-15 16:42:39 +08:00
"github.com/emmansun/gmsm/sm3"
"github.com/emmansun/gmsm/sm9/bn256"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
// SM9 ASN.1 format reference: Information security technology - SM9 cryptographic algorithm application specification
var bigOne = big.NewInt(1)
type hashMode byte
const (
// hashmode used in h1: 0x01
H1 hashMode = 1 + iota
// hashmode used in h2: 0x02
H2
)
type encryptType byte
const (
ENC_TYPE_XOR encryptType = 0
ENC_TYPE_ECB encryptType = 1
ENC_TYPE_CBC encryptType = 2
ENC_TYPE_OFB encryptType = 4
ENC_TYPE_CFB encryptType = 8
)
//hash implements H1(Z,n) or H2(Z,n) in sm9 algorithm.
func hash(z []byte, h hashMode) *big.Int {
md := sm3.New()
var ha [64]byte
var countBytes [4]byte
var ct uint32 = 1
for i := 0; i < 2; i++ {
binary.BigEndian.PutUint32(countBytes[:], ct)
md.Write([]byte{byte(h)})
md.Write(z)
md.Write(countBytes[:])
copy(ha[i*sm3.Size:], md.Sum(nil))
ct++
md.Reset()
}
k := new(big.Int).SetBytes(ha[:40])
n := new(big.Int).Sub(bn256.Order, bigOne)
k.Mod(k, n)
k.Add(k, bigOne)
return k
}
func hashH1(z []byte) *big.Int {
return hash(z, H1)
}
func hashH2(z []byte) *big.Int {
return hash(z, H2)
}
// randFieldElement returns a random element of the order of the given
// curve using the procedure given in FIPS 186-4, Appendix B.5.1.
func randFieldElement(rand io.Reader) (k *big.Int, err error) {
b := make([]byte, 40) // (256 + 64 / 8
_, err = io.ReadFull(rand, b)
if err != nil {
return
}
k = new(big.Int).SetBytes(b)
n := new(big.Int).Sub(bn256.Order, bigOne)
k.Mod(k, n)
k.Add(k, bigOne)
return
}
// Sign signs a hash (which should be the result of hashing a larger message)
// using the user dsa key. It returns the signature as a pair of h and s.
func Sign(rand io.Reader, priv *SignPrivateKey, hash []byte) (h *big.Int, s *bn256.G1, err error) {
var r *big.Int
for {
r, err = randFieldElement(rand)
if err != nil {
return
}
w := priv.SignMasterPublicKey.ScalarBaseMult(r)
var buffer []byte
buffer = append(buffer, hash...)
buffer = append(buffer, w.Marshal()...)
h = hashH2(buffer)
l := new(big.Int).Sub(r, h)
if l.Sign() < 0 {
l.Add(l, bn256.Order)
}
if l.Sign() != 0 {
s = new(bn256.G1).ScalarMult(priv.PrivateKey, l)
break
}
}
return
}
// Sign signs digest with user's DSA key, reading randomness from rand. The opts argument
// is not currently used but, in keeping with the crypto.Signer interface.
// The result is SM9Signature ASN.1 format.
func (priv *SignPrivateKey) Sign(rand io.Reader, hash []byte, opts crypto.SignerOpts) ([]byte, error) {
h, s, err := Sign(rand, priv, hash)
if err != nil {
return nil, err
}
hBytes := make([]byte, 32)
h.FillBytes(hBytes)
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
b.AddASN1OctetString(hBytes)
b.AddASN1BitString(s.MarshalUncompressed())
})
return b.Bytes()
}
// SignASN1 signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. It returns the ASN.1 encoded signature of type SM9Signature.
func SignASN1(rand io.Reader, priv *SignPrivateKey, hash []byte) ([]byte, error) {
return priv.Sign(rand, hash, nil)
}
// Verify verifies the signature in h, s of hash using the master dsa public key and user id, uid and hid.
// Its return value records whether the signature is valid.
func Verify(pub *SignMasterPublicKey, uid []byte, hid byte, hash []byte, h *big.Int, s *bn256.G1) bool {
if h.Sign() <= 0 || h.Cmp(bn256.Order) >= 0 {
return false
}
if !s.IsOnCurve() {
return false
}
t := pub.ScalarBaseMult(h)
// user sign public key p generation
p := pub.GenerateUserPublicKey(uid, hid)
u := bn256.Pair(s, p)
w := new(bn256.GT).Add(u, t)
var buffer []byte
buffer = append(buffer, hash...)
buffer = append(buffer, w.Marshal()...)
h2 := hashH2(buffer)
return h.Cmp(h2) == 0
}
// VerifyASN1 verifies the ASN.1 encoded signature of type SM9Signature, sig, of hash using the
// public key, pub. Its return value records whether the signature is valid.
func VerifyASN1(pub *SignMasterPublicKey, uid []byte, hid byte, hash, sig []byte) bool {
var (
hBytes []byte
sBytes []byte
inner cryptobyte.String
)
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Bytes(&hBytes, asn1.OCTET_STRING) ||
!inner.ReadASN1BitStringAsBytes(&sBytes) ||
!inner.Empty() {
return false
}
h := new(big.Int).SetBytes(hBytes)
if sBytes[0] != 4 {
return false
}
s := new(bn256.G1)
_, err := s.Unmarshal(sBytes[1:])
if err != nil {
return false
}
return Verify(pub, uid, hid, hash, h, s)
}
// Verify verifies the ASN.1 encoded signature, sig, of hash using the
// public key, pub. Its return value records whether the signature is valid.
func (pub *SignMasterPublicKey) Verify(uid []byte, hid byte, hash, sig []byte) bool {
return VerifyASN1(pub, uid, hid, hash, sig)
}
// WrapKey generate and wrap key with reciever's uid and system hid
func WrapKey(rand io.Reader, pub *EncryptMasterPublicKey, uid []byte, hid byte, kLen int) (key []byte, cipher *bn256.G1, err error) {
q := pub.GenerateUserPublicKey(uid, hid)
var r *big.Int
for {
r, err = randFieldElement(rand)
if err != nil {
return
}
cipher = new(bn256.G1).ScalarMult(q, r)
w := pub.ScalarBaseMult(r)
var buffer []byte
buffer = append(buffer, cipher.Marshal()...)
buffer = append(buffer, w.Marshal()...)
buffer = append(buffer, uid...)
2022-08-25 11:48:41 +08:00
key = kdf.Kdf(sm3.New(), buffer, kLen)
2022-08-25 12:54:59 +08:00
if !subtle.ConstantTimeAllZero(key) {
2022-07-15 16:42:39 +08:00
break
}
}
return
}
// WrapKey wrap key and marshal the cipher as ASN1 format, SM9PublicKey1 definition.
func (pub *EncryptMasterPublicKey) WrapKey(rand io.Reader, uid []byte, hid byte, kLen int) ([]byte, []byte, error) {
key, cipher, err := WrapKey(rand, pub, uid, hid, kLen)
if err != nil {
return nil, nil, err
}
var b cryptobyte.Builder
b.AddASN1BitString(cipher.MarshalUncompressed())
cipherASN1, err := b.Bytes()
return key, cipherASN1, err
}
// WrapKeyASN1 wrap key and marshal the result of SM9KeyPackage as ASN1 format. according
// SM9 cryptographic algorithm application specification, SM9KeyPackage defnition.
func (pub *EncryptMasterPublicKey) WrapKeyASN1(rand io.Reader, uid []byte, hid byte, kLen int) ([]byte, error) {
key, cipher, err := WrapKey(rand, pub, uid, hid, kLen)
if err != nil {
return nil, err
}
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
b.AddASN1OctetString(key)
b.AddASN1BitString(cipher.MarshalUncompressed())
})
return b.Bytes()
}
// UnmarshalSM9KeyPackage is an utility to unmarshal SM9KeyPackage
func UnmarshalSM9KeyPackage(der []byte) ([]byte, *bn256.G1, error) {
input := cryptobyte.String(der)
var (
key []byte
cipherBytes []byte
inner cryptobyte.String
)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Bytes(&key, asn1.OCTET_STRING) ||
!inner.ReadASN1BitStringAsBytes(&cipherBytes) ||
!inner.Empty() {
return nil, nil, errors.New("sm9: invalid SM9KeyPackage asn.1 data")
}
g, err := unmarshalG1(cipherBytes)
if err != nil {
return nil, nil, err
}
return key, g, nil
}
// UnwrapKey unwrap key from cipher, user id and aligned key length
func UnwrapKey(priv *EncryptPrivateKey, uid []byte, cipher *bn256.G1, kLen int) ([]byte, error) {
if !cipher.IsOnCurve() {
return nil, errors.New("sm9: invalid cipher, it's NOT on curve")
}
w := bn256.Pair(cipher, priv.PrivateKey)
var buffer []byte
buffer = append(buffer, cipher.Marshal()...)
buffer = append(buffer, w.Marshal()...)
buffer = append(buffer, uid...)
2022-08-25 11:48:41 +08:00
key := kdf.Kdf(sm3.New(), buffer, kLen)
2022-08-25 12:54:59 +08:00
if subtle.ConstantTimeAllZero(key) {
2022-07-15 16:42:39 +08:00
return nil, errors.New("sm9: invalid cipher")
}
return key, nil
}
// UnwrapKey unwrap key from cipherDer, user id and aligned key length.
// cipherDer is SM9PublicKey1 format according SM9 cryptographic algorithm application specification.
func (priv *EncryptPrivateKey) UnwrapKey(uid, cipherDer []byte, kLen int) ([]byte, error) {
var bytes []byte
input := cryptobyte.String(cipherDer)
if !input.ReadASN1BitStringAsBytes(&bytes) || !input.Empty() {
return nil, errors.New("sm9: invalid chipher asn1 data")
}
g, err := unmarshalG1(bytes)
if err != nil {
return nil, err
}
return UnwrapKey(priv, uid, g, kLen)
}
// Encrypt encrypt plaintext, output ciphertext with format C1||C3||C2
func Encrypt(rand io.Reader, pub *EncryptMasterPublicKey, uid []byte, hid byte, plaintext []byte) ([]byte, error) {
key, cipher, err := WrapKey(rand, pub, uid, hid, len(plaintext)+sm3.Size)
if err != nil {
return nil, err
}
2022-08-18 14:49:35 +08:00
subtle.XORBytes(key, key[:len(plaintext)], plaintext)
2022-07-15 16:42:39 +08:00
hash := sm3.New()
hash.Write(key)
c3 := hash.Sum(nil)
ciphertext := append(cipher.Marshal(), c3...)
ciphertext = append(ciphertext, key[:len(plaintext)]...)
return ciphertext, nil
}
// EncryptASN1 encrypt plaintext and output ciphertext with ASN.1 format according
// SM9 cryptographic algorithm application specification, SM9Cipher definition.
func EncryptASN1(rand io.Reader, pub *EncryptMasterPublicKey, uid []byte, hid byte, plaintext []byte) ([]byte, error) {
return pub.Encrypt(rand, uid, hid, plaintext)
}
// Encrypt encrypt plaintext and output ciphertext with ASN.1 format according
// SM9 cryptographic algorithm application specification, SM9Cipher definition.
func (pub *EncryptMasterPublicKey) Encrypt(rand io.Reader, uid []byte, hid byte, plaintext []byte) ([]byte, error) {
key, cipher, err := WrapKey(rand, pub, uid, hid, len(plaintext)+sm3.Size)
if err != nil {
return nil, err
}
2022-08-18 14:49:35 +08:00
subtle.XORBytes(key, key[:len(plaintext)], plaintext)
2022-07-15 16:42:39 +08:00
hash := sm3.New()
hash.Write(key)
c3 := hash.Sum(nil)
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
b.AddASN1Int64(int64(ENC_TYPE_XOR))
b.AddASN1BitString(cipher.MarshalUncompressed())
b.AddASN1OctetString(c3)
b.AddASN1OctetString(key[:len(plaintext)])
})
return b.Bytes()
}
// Decrypt decrypt chipher, ciphertext should be with format C1||C3||C2
func Decrypt(priv *EncryptPrivateKey, uid, ciphertext []byte) ([]byte, error) {
c := &bn256.G1{}
c3, err := c.Unmarshal(ciphertext)
if err != nil {
return nil, err
}
key, err := UnwrapKey(priv, uid, c, len(c3))
if err != nil {
return nil, err
}
c2 := c3[sm3.Size:]
hash := sm3.New()
hash.Write(c2)
hash.Write(key[len(c2):])
c32 := hash.Sum(nil)
2022-08-18 14:49:35 +08:00
if goSubtle.ConstantTimeCompare(c3[:sm3.Size], c32) != 1 {
2022-07-15 16:42:39 +08:00
return nil, errors.New("sm9: invalid mac value")
}
2022-08-18 14:49:35 +08:00
subtle.XORBytes(key, c2, key[:len(c2)])
2022-07-15 16:42:39 +08:00
return key[:len(c2)], nil
}
// DecryptASN1 decrypt chipher, ciphertext should be with ASN.1 format according
// SM9 cryptographic algorithm application specification, SM9Cipher definition.
func DecryptASN1(priv *EncryptPrivateKey, uid, ciphertext []byte) ([]byte, error) {
if len(ciphertext) <= 32+65 {
return nil, errors.New("sm9: invalid ciphertext length")
}
var (
encType int
c3Bytes []byte
c1Bytes []byte
c2Bytes []byte
inner cryptobyte.String
)
input := cryptobyte.String(ciphertext)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
2022-10-28 09:31:41 +08:00
(!input.Empty() && !subtle.ConstantTimeAllZero(input)) ||
2022-07-15 16:42:39 +08:00
!inner.ReadASN1Integer(&encType) ||
!inner.ReadASN1BitStringAsBytes(&c1Bytes) ||
!inner.ReadASN1Bytes(&c3Bytes, asn1.OCTET_STRING) ||
!inner.ReadASN1Bytes(&c2Bytes, asn1.OCTET_STRING) ||
!inner.Empty() {
return nil, errors.New("sm9: invalid ciphertext asn.1 data")
}
if encType != int(ENC_TYPE_XOR) {
return nil, fmt.Errorf("sm9: does not support this kind of encrypt type <%v> yet", encType)
}
c, err := unmarshalG1(c1Bytes)
if err != nil {
return nil, err
}
key, err := UnwrapKey(priv, uid, c, len(c2Bytes)+len(c3Bytes))
if err != nil {
return nil, err
}
if err != nil {
return nil, err
}
hash := sm3.New()
hash.Write(c2Bytes)
hash.Write(key[len(c2Bytes):])
c32 := hash.Sum(nil)
2022-08-18 14:49:35 +08:00
if goSubtle.ConstantTimeCompare(c3Bytes, c32) != 1 {
2022-07-15 16:42:39 +08:00
return nil, errors.New("sm9: invalid mac value")
}
2022-08-18 14:49:35 +08:00
subtle.XORBytes(key, c2Bytes, key[:len(c2Bytes)])
2022-07-15 16:42:39 +08:00
return key[:len(c2Bytes)], nil
}
// Decrypt decrypt chipher, ciphertext should be with ASN.1 format according
// SM9 cryptographic algorithm application specification, SM9Cipher definition.
func (priv *EncryptPrivateKey) Decrypt(uid, ciphertext []byte) ([]byte, error) {
if ciphertext[0] == 0x30 { // should be ASN.1 format
return DecryptASN1(priv, uid, ciphertext)
}
// fallback to C1||C3||C2 raw format
return Decrypt(priv, uid, ciphertext)
}
// KeyExchange key exchange struct, include internal stat in whole key exchange flow.
// Initiator's flow will be: NewKeyExchange -> InitKeyExchange -> transmission -> ConfirmResponder
// Responder's flow will be: NewKeyExchange -> waiting ... -> RepondKeyExchange -> transmission -> ConfirmInitiator
type KeyExchange struct {
genSignature bool // control the optional sign/verify step triggered by responsder
keyLength int // key length
privateKey *EncryptPrivateKey // owner's encryption private key
uid []byte // owner uid
peerUID []byte // peer uid
r *big.Int // random which will be used to compute secret
secret *bn256.G1 // generated secret which will be passed to peer
peerSecret *bn256.G1 // received peer's secret
g1 *bn256.GT // internal state which will be used when compute the key and signature
g2 *bn256.GT // internal state which will be used when compute the key and signature
g3 *bn256.GT // internal state which will be used when compute the key and signature
}
// NewKeyExchange create one new KeyExchange object
func NewKeyExchange(priv *EncryptPrivateKey, uid, peerUID []byte, keyLen int, genSignature bool) *KeyExchange {
ke := &KeyExchange{}
ke.genSignature = genSignature
ke.keyLength = keyLen
ke.privateKey = priv
ke.uid = uid
ke.peerUID = peerUID
return ke
}
// Destroy clear all internal state and Ephemeral private/public keys
func (ke *KeyExchange) Destroy() {
if ke.r != nil {
ke.r.SetInt64(0)
}
if ke.g1 != nil {
ke.g1.SetOne()
}
if ke.g2 != nil {
ke.g2.SetOne()
}
if ke.g3 != nil {
ke.g3.SetOne()
}
2022-07-15 16:42:39 +08:00
}
func initKeyExchange(ke *KeyExchange, hid byte, r *big.Int) {
pubB := ke.privateKey.GenerateUserPublicKey(ke.peerUID, hid)
ke.r = r
rA := new(bn256.G1).ScalarMult(pubB, ke.r)
ke.secret = rA
}
// InitKeyExchange generate random with responder uid, for initiator's step A1-A4
func (ke *KeyExchange) InitKeyExchange(rand io.Reader, hid byte) (*bn256.G1, error) {
r, err := randFieldElement(rand)
if err != nil {
return nil, err
}
initKeyExchange(ke, hid, r)
return ke.secret, nil
}
func (ke *KeyExchange) sign(isResponder bool, prefix byte) []byte {
var buffer []byte
hash := sm3.New()
hash.Write(ke.g2.Marshal())
hash.Write(ke.g3.Marshal())
if isResponder {
hash.Write(ke.peerUID)
hash.Write(ke.uid)
hash.Write(ke.peerSecret.Marshal())
hash.Write(ke.secret.Marshal())
} else {
hash.Write(ke.uid)
hash.Write(ke.peerUID)
hash.Write(ke.secret.Marshal())
hash.Write(ke.peerSecret.Marshal())
}
buffer = hash.Sum(nil)
hash.Reset()
hash.Write([]byte{prefix})
hash.Write(ke.g1.Marshal())
hash.Write(buffer)
return hash.Sum(nil)
}
func (ke *KeyExchange) generateSharedKey(isResponder bool) ([]byte, error) {
2022-07-15 16:42:39 +08:00
var buffer []byte
if isResponder {
buffer = append(buffer, ke.peerUID...)
buffer = append(buffer, ke.uid...)
buffer = append(buffer, ke.peerSecret.Marshal()...)
buffer = append(buffer, ke.secret.Marshal()...)
} else {
buffer = append(buffer, ke.uid...)
buffer = append(buffer, ke.peerUID...)
buffer = append(buffer, ke.secret.Marshal()...)
buffer = append(buffer, ke.peerSecret.Marshal()...)
}
buffer = append(buffer, ke.g1.Marshal()...)
buffer = append(buffer, ke.g2.Marshal()...)
buffer = append(buffer, ke.g3.Marshal()...)
2022-08-25 11:48:41 +08:00
return kdf.Kdf(sm3.New(), buffer, ke.keyLength), nil
2022-07-15 16:42:39 +08:00
}
func respondKeyExchange(ke *KeyExchange, hid byte, r *big.Int, rA *bn256.G1) (*bn256.G1, []byte, error) {
if !rA.IsOnCurve() {
return nil, nil, errors.New("sm9: invalid initiator's ephemeral public key")
2022-07-15 16:42:39 +08:00
}
ke.peerSecret = rA
pubA := ke.privateKey.GenerateUserPublicKey(ke.peerUID, hid)
ke.r = r
rB := new(bn256.G1).ScalarMult(pubA, r)
ke.secret = rB
ke.g1 = bn256.Pair(ke.peerSecret, ke.privateKey.PrivateKey)
ke.g3 = &bn256.GT{}
ke.g3.ScalarMult(ke.g1, r)
ke.g2 = ke.privateKey.EncryptMasterPublicKey.ScalarBaseMult(r)
if !ke.genSignature {
return ke.secret, nil, nil
}
return ke.secret, ke.sign(true, 0x82), nil
}
// RepondKeyExchange when responder receive rA, for responder's step B1-B7
func (ke *KeyExchange) RepondKeyExchange(rand io.Reader, hid byte, rA *bn256.G1) (*bn256.G1, []byte, error) {
r, err := randFieldElement(rand)
if err != nil {
return nil, nil, err
}
return respondKeyExchange(ke, hid, r, rA)
}
// ConfirmResponder for initiator's step A5-A7
func (ke *KeyExchange) ConfirmResponder(rB *bn256.G1, sB []byte) ([]byte, []byte, error) {
2022-07-15 16:42:39 +08:00
if !rB.IsOnCurve() {
return nil, nil, errors.New("sm9: invalid responder's ephemeral public key")
2022-07-15 16:42:39 +08:00
}
// step 5
ke.peerSecret = rB
ke.g1 = ke.privateKey.EncryptMasterPublicKey.ScalarBaseMult(ke.r)
ke.g2 = bn256.Pair(ke.peerSecret, ke.privateKey.PrivateKey)
ke.g3 = &bn256.GT{}
ke.g3.ScalarMult(ke.g2, ke.r)
// step 6, verify signature
if len(sB) > 0 {
signature := ke.sign(false, 0x82)
2022-08-18 14:49:35 +08:00
if goSubtle.ConstantTimeCompare(signature, sB) != 1 {
return nil, nil, errors.New("sm9: invalid responder's signature")
2022-07-15 16:42:39 +08:00
}
}
key, err := ke.generateSharedKey(false)
if err != nil {
return nil, nil, err
}
if !ke.genSignature {
return key, nil, nil
}
return key, ke.sign(false, 0x83), nil
2022-07-15 16:42:39 +08:00
}
// ConfirmInitiator for responder's step B8
func (ke *KeyExchange) ConfirmInitiator(s1 []byte) ([]byte, error) {
if s1 != nil {
buffer := ke.sign(true, 0x83)
if goSubtle.ConstantTimeCompare(buffer, s1) != 1 {
return nil, errors.New("sm9: invalid initiator's signature")
}
2022-07-15 16:42:39 +08:00
}
return ke.generateSharedKey(true)
2022-07-15 16:42:39 +08:00
}