gmsm/internal/sm2ec/sm2p256_asm.go

912 lines
26 KiB
Go
Raw Normal View History

// It is by standing on the shoulders of giants.
// This file contains the Go wrapper for the constant-time, 64-bit assembly
// implementation of P256. The optimizations performed here are described in
// detail in:
// S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with
// 256-bit primes"
// https://link.springer.com/article/10.1007%2Fs13389-014-0090-x
// https://eprint.iacr.org/2013/816.pdf
//go:build (amd64 || arm64) && !purego
package sm2ec
import (
_ "embed"
"errors"
"math/bits"
"unsafe"
"golang.org/x/sys/cpu"
)
// p256Element is a P-256 base field element in [0, P-1] in the Montgomery
// domain (with R 2²⁵⁶) as four limbs in little-endian order value.
type p256Element [4]uint64
// p256One is one in the Montgomery domain.
var p256One = p256Element{0x0000000000000001, 0x00000000ffffffff, 0x0000000000000000, 0x0000000100000000}
var p256Zero = p256Element{}
// p256P is 2^256 - 2^224 - 2^96 + 2^64 - 1.
var p256P = p256Element{0xffffffffffffffff, 0xffffffff00000000,
0xffffffffffffffff, 0xfffffffeffffffff}
// P256Point is a P-256 point. The zero value should not be assumed to be valid
// (although it is in this implementation).
type SM2P256Point struct {
// (X:Y:Z) are Jacobian coordinates where x = X/Z² and y = Y/Z³. The point
// at infinity can be represented by any set of coordinates with Z = 0.
x, y, z p256Element
}
// NewSM2P256Point returns a new SM2P256Point representing the point at infinity.
func NewSM2P256Point() *SM2P256Point {
return &SM2P256Point{
x: p256One, y: p256One, z: p256Zero,
}
}
// SetGenerator sets p to the canonical generator and returns p.
func (p *SM2P256Point) SetGenerator() *SM2P256Point {
p.x = p256Element{0x61328990f418029e, 0x3e7981eddca6c050,
0xd6a1ed99ac24c3c3, 0x91167a5ee1c13b05}
p.y = p256Element{0xc1354e593c2d0ddd, 0xc1f5e5788d3295fa,
0x8d4cfb066e2a48f8, 0x63cd65d481d735bd}
p.z = p256One
return p
}
// Set sets p = q and returns p.
func (p *SM2P256Point) Set(q *SM2P256Point) *SM2P256Point {
p.x, p.y, p.z = q.x, q.y, q.z
return p
}
const p256ElementLength = 32
const p256UncompressedLength = 1 + 2*p256ElementLength
const p256CompressedLength = 1 + p256ElementLength
// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
// the curve, it returns nil and an error, and the receiver is unchanged.
// Otherwise, it returns p.
func (p *SM2P256Point) SetBytes(b []byte) (*SM2P256Point, error) {
// p256Mul operates in the Montgomery domain with R = 2²⁵⁶ mod p. Thus rr
// here is R in the Montgomery domain, or R×R mod p. See comment in
// P256OrdInverse about how this is used.
rr := p256Element{0x0000000200000003, 0x00000002ffffffff,
0x0000000100000001, 0x0000000400000002}
switch {
// Point at infinity.
case len(b) == 1 && b[0] == 0:
return p.Set(NewSM2P256Point()), nil
// Uncompressed form.
case len(b) == p256UncompressedLength && b[0] == 4:
var r SM2P256Point
p256BigToLittle(&r.x, (*[32]byte)(b[1:33]))
p256BigToLittle(&r.y, (*[32]byte)(b[33:65]))
if p256LessThanP(&r.x) == 0 || p256LessThanP(&r.y) == 0 {
return nil, errors.New("invalid P256 element encoding")
}
p256Mul(&r.x, &r.x, &rr)
p256Mul(&r.y, &r.y, &rr)
if err := p256CheckOnCurve(&r.x, &r.y); err != nil {
return nil, err
}
r.z = p256One
return p.Set(&r), nil
// Compressed form.
case len(b) == p256CompressedLength && (b[0] == 2 || b[0] == 3):
var r SM2P256Point
p256BigToLittle(&r.x, (*[32]byte)(b[1:33]))
if p256LessThanP(&r.x) == 0 {
return nil, errors.New("invalid P256 element encoding")
}
p256Mul(&r.x, &r.x, &rr)
// y² = x³ - 3x + b
p256Polynomial(&r.y, &r.x)
if !p256Sqrt(&r.y, &r.y) {
return nil, errors.New("invalid P256 compressed point encoding")
}
// Select the positive or negative root, as indicated by the least
// significant bit, based on the encoding type byte.
yy := new(p256Element)
p256FromMont(yy, &r.y)
cond := int(yy[0]&1) ^ int(b[0]&1)
p256NegCond(&r.y, cond)
r.z = p256One
return p.Set(&r), nil
default:
return nil, errors.New("invalid P256 point encoding")
}
}
// p256Polynomial sets y2 to x³ - 3x + b, and returns y2.
func p256Polynomial(y2, x *p256Element) *p256Element {
x3 := new(p256Element)
p256Sqr(x3, x, 1)
p256Mul(x3, x3, x)
threeX := new(p256Element)
p256Add(threeX, x, x)
p256Add(threeX, threeX, x)
p256NegCond(threeX, 1)
p256B := &p256Element{0x90d230632bc0dd42, 0x71cf379ae9b537ab,
0x527981505ea51c3c, 0x240fe188ba20e2c8}
p256Add(x3, x3, threeX)
p256Add(x3, x3, p256B)
*y2 = *x3
return y2
}
func p256CheckOnCurve(x, y *p256Element) error {
// y² = x³ - 3x + b
rhs := p256Polynomial(new(p256Element), x)
lhs := new(p256Element)
p256Sqr(lhs, y, 1)
if p256Equal(lhs, rhs) != 1 {
return errors.New("point not on SM2 P256 curve")
}
return nil
}
// p256LessThanP returns 1 if x < p, and 0 otherwise. Note that a p256Element is
// not allowed to be equal to or greater than p, so if this function returns 0
// then x is invalid.
func p256LessThanP(x *p256Element) int {
var b uint64
_, b = bits.Sub64(x[0], p256P[0], b)
_, b = bits.Sub64(x[1], p256P[1], b)
_, b = bits.Sub64(x[2], p256P[2], b)
_, b = bits.Sub64(x[3], p256P[3], b)
return int(b)
}
// p256Add sets res = x + y.
func p256Add(res, x, y *p256Element) {
var c, b uint64
t1 := make([]uint64, 4)
t1[0], c = bits.Add64(x[0], y[0], 0)
t1[1], c = bits.Add64(x[1], y[1], c)
t1[2], c = bits.Add64(x[2], y[2], c)
t1[3], c = bits.Add64(x[3], y[3], c)
t2 := make([]uint64, 4)
t2[0], b = bits.Sub64(t1[0], p256P[0], 0)
t2[1], b = bits.Sub64(t1[1], p256P[1], b)
t2[2], b = bits.Sub64(t1[2], p256P[2], b)
t2[3], b = bits.Sub64(t1[3], p256P[3], b)
// Three options:
// - a+b < p
// then c is 0, b is 1, and t1 is correct
// - p <= a+b < 2^256
// then c is 0, b is 0, and t2 is correct
// - 2^256 <= a+b
// then c is 1, b is 1, and t2 is correct
t2Mask := (c ^ b) - 1
res[0] = (t1[0] & ^t2Mask) | (t2[0] & t2Mask)
res[1] = (t1[1] & ^t2Mask) | (t2[1] & t2Mask)
res[2] = (t1[2] & ^t2Mask) | (t2[2] & t2Mask)
res[3] = (t1[3] & ^t2Mask) | (t2[3] & t2Mask)
}
// p256Sqrt sets e to a square root of x. If x is not a square, p256Sqrt returns
// false and e is unchanged. e and x can overlap.
func p256Sqrt(e, x *p256Element) (isSquare bool) {
z, t0, t1, t2, t3, t4 := new(p256Element), new(p256Element), new(p256Element), new(p256Element), new(p256Element), new(p256Element)
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
//
// The sequence of 13 multiplications and 253 squarings is derived from the
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
//
// _10 = 2*1
// _11 = 1 + _10
// _110 = 2*_11
// _111 = 1 + _110
// _1110 = 2*_111
// _1111 = 1 + _1110
// _11110 = 2*_1111
// _111100 = 2*_11110
// _1111000 = 2*_111100
// i19 = (_1111000 << 3 + _111100) << 5 + _1111000
// x31 = (i19 << 2 + _11110) << 14 + i19 + _111
// i42 = x31 << 4
// i73 = i42 << 31
// i74 = i42 + i73
// i171 = (i73 << 32 + i74) << 62 + i74 + _1111
// return (i171 << 32 + 1) << 62
//
p256Sqr(z, x, 1) // z.Square(x)
p256Mul(z, x, z) // z.Mul(x, z)
p256Sqr(z, z, 1) // z.Square(z)
p256Mul(t0, x, z) // t0.Mul(x, z)
p256Sqr(z, t0, 1) // z.Square(t0)
p256Mul(z, x, z) // z.Mul(x, z)
p256Sqr(t2, z, 1) // t2.Square(z)
p256Sqr(t3, t2, 1) // t3.Square(t2)
p256Sqr(t1, t3, 1) // t1.Square(t3)
// t4.Square(t1)
//for s := 1; s < 3; s++ {
// t4.Square(t4)
//}
p256Sqr(t4, t1, 3)
p256Mul(t3, t3, t4) // t3.Mul(t3, t4)
//for s := 0; s < 5; s++ {
// t3.Square(t3)
//}
p256Sqr(t3, t3, 5)
p256Mul(t1, t1, t3) // t1.Mul(t1, t3)
//t3.Square(t1)
//for s := 1; s < 2; s++ {
// t3.Square(t3)
//}
p256Sqr(t3, t1, 2)
p256Mul(t2, t2, t3) // t2.Mul(t2, t3)
//for s := 0; s < 14; s++ {
// t2.Square(t2)
//}
p256Sqr(t2, t2, 14)
p256Mul(t1, t1, t2) // t1.Mul(t1, t2)
p256Mul(t0, t0, t1) // t0.Mul(t0, t1)
//for s := 0; s < 4; s++ {
// t0.Square(t0)
//}
p256Sqr(t0, t0, 4)
//t1.Square(t0)
//for s := 1; s < 31; s++ {
// t1.Square(t1)
//}
p256Sqr(t1, t0, 31)
p256Mul(t0, t0, t1) //t0.Mul(t0, t1)
//for s := 0; s < 32; s++ {
// t1.Square(t1)
//}
p256Sqr(t1, t1, 32)
p256Mul(t1, t0, t1) //t1.Mul(t0, t1)
//for s := 0; s < 62; s++ {
// t1.Square(t1)
//}
p256Sqr(t1, t1, 62)
p256Mul(t0, t0, t1) //t0.Mul(t0, t1)
p256Mul(z, z, t0) //z.Mul(z, t0)
//for s := 0; s < 32; s++ {
// e.Square(e)
//}
p256Sqr(z, z, 32)
p256Mul(z, z, x) // z.Mul(x, z)
//for s := 0; s < 62; s++ {
// z.Square(z)
//}
p256Sqr(z, z, 62)
p256Sqr(t1, z, 1)
if p256Equal(t1, x) != 1 {
return false
}
*e = *z
return true
}
// The following assembly functions are implemented in p256_asm_*.s
// amd64 assembly uses ADCX/ADOX/MULX
var supportBMI2 = cpu.X86.HasADX && cpu.X86.HasBMI2
var supportAVX2 = cpu.X86.HasAVX2
// Montgomery multiplication. Sets res = in1 * in2 * R⁻¹ mod p.
//
//go:noescape
func p256Mul(res, in1, in2 *p256Element)
// Montgomery square, repeated n times (n >= 1).
//
//go:noescape
func p256Sqr(res, in *p256Element, n int)
// Montgomery multiplication by R⁻¹, or 1 outside the domain.
// Sets res = in * R⁻¹, bringing res out of the Montgomery domain.
//
//go:noescape
func p256FromMont(res, in *p256Element)
// If cond is not 0, sets val = -val mod p.
//
//go:noescape
func p256NegCond(val *p256Element, cond int)
// If cond is 0, sets res = b, otherwise sets res = a.
//
//go:noescape
func p256MovCond(res, a, b *SM2P256Point, cond int)
//go:noescape
func p256BigToLittle(res *p256Element, in *[32]byte)
//go:noescape
func p256LittleToBig(res *[32]byte, in *p256Element)
//go:noescape
func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte)
//go:noescape
func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement)
// p256OrdReduce ensures s is in the range [0, ord(G)-1].
//
//go:noescape
func p256OrdReduce(s *p256OrdElement)
// p256Table is a table of the first 16 multiples of a point. Points are stored
// at an index offset of -1 so [8]P is at index 7, P is at 0, and [16]P is at 15.
// [0]P is the point at infinity and it's not stored.
type p256Table [32]SM2P256Point
// p256Select sets res to the point at index idx in the table.
// idx must be in [0, limit-1]. It executes in constant time.
//
//go:noescape
func p256Select(res *SM2P256Point, table *p256Table, idx, limit int)
// p256AffinePoint is a point in affine coordinates (x, y). x and y are still
// Montgomery domain elements. The point can't be the point at infinity.
type p256AffinePoint struct {
x, y p256Element
}
// p256AffineTable is a table of the first 32 multiples of a point. Points are
// stored at an index offset of -1 like in p256Table, and [0]P is not stored.
type p256AffineTable [32]p256AffinePoint
// p256Precomputed is a series of precomputed multiples of G, the canonical
// generator. The first p256AffineTable contains multiples of G. The second one
// multiples of [2⁶]G, the third one of [2¹²]G, and so on, where each successive
// table is the previous table doubled six times. Six is the width of the
// sliding window used in p256ScalarMult, and having each table already
// pre-doubled lets us avoid the doublings between windows entirely. This table
// MUST NOT be modified, as it aliases into p256PrecomputedEmbed below.
var p256Precomputed *[43]p256AffineTable
//go:embed p256_asm_table.bin
var p256PrecomputedEmbed string
func init() {
p256PrecomputedPtr := (*unsafe.Pointer)(unsafe.Pointer(&p256PrecomputedEmbed))
p256Precomputed = (*[43]p256AffineTable)(*p256PrecomputedPtr)
}
// p256SelectAffine sets res to the point at index idx in the table.
// idx must be in [0, 31]. It executes in constant time.
//
//go:noescape
func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int)
// Point addition with an affine point and constant time conditions.
// If zero is 0, sets res = in2. If sel is 0, sets res = in1.
// If sign is not 0, sets res = in1 + -in2. Otherwise, sets res = in1 + in2
//
//go:noescape
func p256PointAddAffineAsm(res, in1 *SM2P256Point, in2 *p256AffinePoint, sign, sel, zero int)
// Point addition. Sets res = in1 + in2. Returns one if the two input points
// were equal and zero otherwise. If in1 or in2 are the point at infinity, res
// and the return value are undefined.
//
//go:noescape
func p256PointAddAsm(res, in1, in2 *SM2P256Point) int
// Point doubling. Sets res = in + in. in can be the point at infinity.
//
//go:noescape
func p256PointDoubleAsm(res, in *SM2P256Point)
// Point doubling 6 times. in can be the point at infinity.
//
//go:noescape
func p256PointDouble6TimesAsm(res, in *SM2P256Point)
// p256OrdElement is a P-256 scalar field element in [0, ord(G)-1] in the
// Montgomery domain (with R 2²⁵⁶) as four uint64 limbs in little-endian order.
type p256OrdElement [4]uint64
// Add sets q = p1 + p2, and returns q. The points may overlap.
func (q *SM2P256Point) Add(r1, r2 *SM2P256Point) *SM2P256Point {
var sum, double SM2P256Point
r1IsInfinity := r1.isInfinity()
r2IsInfinity := r2.isInfinity()
pointsEqual := p256PointAddAsm(&sum, r1, r2)
p256PointDoubleAsm(&double, r1)
p256MovCond(&sum, &double, &sum, pointsEqual)
p256MovCond(&sum, r1, &sum, r2IsInfinity)
p256MovCond(&sum, r2, &sum, r1IsInfinity)
return q.Set(&sum)
}
// Double sets q = p + p, and returns q. The points may overlap.
func (q *SM2P256Point) Double(p *SM2P256Point) *SM2P256Point {
var double SM2P256Point
p256PointDoubleAsm(&double, p)
return q.Set(&double)
}
// ScalarBaseMult sets r = scalar * generator, where scalar is a 32-byte big
// endian value, and returns r. If scalar is not 32 bytes long, ScalarBaseMult
// returns an error and the receiver is unchanged.
func (r *SM2P256Point) ScalarBaseMult(scalar []byte) (*SM2P256Point, error) {
if len(scalar) != 32 {
return nil, errors.New("invalid scalar length")
}
scalarReversed := new(p256OrdElement)
p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar))
p256OrdReduce(scalarReversed)
r.p256BaseMult(scalarReversed)
return r, nil
}
// ScalarMult sets r = scalar * q, where scalar is a 32-byte big endian value,
// and returns r. If scalar is not 32 bytes long, ScalarBaseMult returns an
// error and the receiver is unchanged.
func (r *SM2P256Point) ScalarMult(q *SM2P256Point, scalar []byte) (*SM2P256Point, error) {
if len(scalar) != 32 {
return nil, errors.New("invalid scalar length")
}
scalarReversed := new(p256OrdElement)
p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar))
p256OrdReduce(scalarReversed)
r.Set(q).p256ScalarMult(scalarReversed)
return r, nil
}
// uint64IsZero returns 1 if x is zero and zero otherwise.
func uint64IsZero(x uint64) int {
x = ^x
x &= x >> 32
x &= x >> 16
x &= x >> 8
x &= x >> 4
x &= x >> 2
x &= x >> 1
return int(x & 1)
}
// p256Equal returns 1 if a and b are equal and 0 otherwise.
func p256Equal(a, b *p256Element) int {
var acc uint64
for i := range a {
acc |= a[i] ^ b[i]
}
return uint64IsZero(acc)
}
// isInfinity returns 1 if p is the point at infinity and 0 otherwise.
func (p *SM2P256Point) isInfinity() int {
return p256Equal(&p.z, &p256Zero)
}
// Bytes returns the uncompressed or infinity encoding of p, as specified in
// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
// infinity is shorter than all other encodings.
func (p *SM2P256Point) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [p256UncompressedLength]byte
return p.bytes(&out)
}
func (p *SM2P256Point) bytes(out *[p256UncompressedLength]byte) []byte {
// The proper representation of the point at infinity is a single zero byte.
if p.isInfinity() == 1 {
return append(out[:0], 0)
}
x, y := new(p256Element), new(p256Element)
p.affineFromMont(x, y)
out[0] = 4 // Uncompressed form.
p256LittleToBig((*[32]byte)(out[1:33]), x)
p256LittleToBig((*[32]byte)(out[33:65]), y)
return out[:]
}
// affineFromMont sets (x, y) to the affine coordinates of p, converted out of the
// Montgomery domain.
func (p *SM2P256Point) affineFromMont(x, y *p256Element) {
p256Inverse(y, &p.z)
p256Sqr(x, y, 1)
p256Mul(y, y, x)
p256Mul(x, &p.x, x)
p256Mul(y, &p.y, y)
p256FromMont(x, x)
p256FromMont(y, y)
}
// BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1,
// Version 2.0, Section 2.3.5, or an error if p is the point at infinity.
func (p *SM2P256Point) BytesX() ([]byte, error) {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [p256ElementLength]byte
return p.bytesX(&out)
}
func (p *SM2P256Point) bytesX(out *[p256ElementLength]byte) ([]byte, error) {
if p.isInfinity() == 1 {
return nil, errors.New("SM2 point is the point at infinity")
}
x := new(p256Element)
p256Inverse(x, &p.z)
p256Sqr(x, x, 1)
p256Mul(x, &p.x, x)
p256FromMont(x, x)
p256LittleToBig((*[32]byte)(out[:]), x)
return out[:], nil
}
// BytesCompressed returns the compressed or infinity encoding of p, as
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
// point at infinity is shorter than all other encodings.
func (p *SM2P256Point) BytesCompressed() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [p256CompressedLength]byte
return p.bytesCompressed(&out)
}
func (p *SM2P256Point) bytesCompressed(out *[p256CompressedLength]byte) []byte {
if p.isInfinity() == 1 {
return append(out[:0], 0)
}
x, y := new(p256Element), new(p256Element)
p.affineFromMont(x, y)
out[0] = 2 | byte(y[0]&1)
p256LittleToBig((*[32]byte)(out[1:33]), x)
return out[:]
}
// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
func (q *SM2P256Point) Select(p1, p2 *SM2P256Point, cond int) *SM2P256Point {
p256MovCond(q, p1, p2, cond)
return q
}
// p256Inverse sets out to in⁻¹ mod p. If in is zero, out will be zero.
func p256Inverse(out, in *p256Element) {
// Inversion is calculated through exponentiation by p - 2, per Fermat's
// little theorem.
//
// The sequence of 14 multiplications and 255 squarings is derived from the
// following addition chain generated with github.com/mmcloughlin/addchain
// v0.4.0.
//
// _10 = 2*1
// _11 = 1 + _10
// _110 = 2*_11
// _111 = 1 + _110
// _111000 = _111 << 3
// _111111 = _111 + _111000
// _1111110 = 2*_111111
// _1111111 = 1 + _1111110
// x12 = _1111110 << 5 + _111111
// x24 = x12 << 12 + x12
// x31 = x24 << 7 + _1111111
// i39 = x31 << 2
// i68 = i39 << 29
// x62 = x31 + i68
// i71 = i68 << 2
// x64 = i39 + i71 + _11
// i265 = ((i71 << 32 + x64) << 64 + x64) << 94
// return (x62 + i265) << 2 + 1
// Allocate Temporaries.
var (
t0 = new(p256Element)
t1 = new(p256Element)
t2 = new(p256Element)
)
// Step 1: z = x^0x2
//z.Sqr(x)
p256Sqr(out, in, 1)
// Step 2: t0 = x^0x3
// t0.Mul(x, z)
p256Mul(t0, in, out)
// Step 3: z = x^0x6
// z.Sqr(t0)
p256Sqr(out, t0, 1)
// Step 4: z = x^0x7
// z.Mul(x, z)
p256Mul(out, in, out)
// Step 7: t1 = x^0x38
//t1.Sqr(z)
//for s := 1; s < 3; s++ {
// t1.Sqr(t1)
//}
p256Sqr(t1, out, 3)
// Step 8: t1 = x^0x3f
//t1.Mul(z, t1)
p256Mul(t1, out, t1)
// Step 9: t2 = x^0x7e
//t2.Sqr(t1)
p256Sqr(t2, t1, 1)
// Step 10: z = x^0x7f
//z.Mul(x, t2)
p256Mul(out, in, t2)
// Step 15: t2 = x^0xfc0
//for s := 0; s < 5; s++ {
// t2.Sqr(t2)
//}
p256Sqr(t2, t2, 5)
// Step 16: t1 = x^0xfff
//t1.Mul(t1, t2)
p256Mul(t1, t1, t2)
// Step 28: t2 = x^0xfff000
//t2.Sqr(t1)
//for s := 1; s < 12; s++ {
// t2.Sqr(t2)
//}
p256Sqr(t2, t1, 12)
// Step 29: t1 = x^0xffffff
//t1.Mul(t1, t2)
p256Mul(t1, t1, t2)
// Step 36: t1 = x^0x7fffff80
//for s := 0; s < 7; s++ {
// t1.Sqr(t1)
//}
p256Sqr(t1, t1, 7)
// Step 37: z = x^0x7fffffff
//z.Mul(z, t1)
p256Mul(out, out, t1)
// Step 39: t2 = x^0x1fffffffc
//t2.Sqr(z)
//for s := 1; s < 2; s++ {
// t2.Sqr(t2)
//}
p256Sqr(t2, out, 2)
// Step 68: t1 = x^0x3fffffff80000000
//t1.Sqr(t2)
//for s := 1; s < 29; s++ {
// t1.Sqr(t1)
//}
p256Sqr(t1, t2, 29)
// Step 69: z = x^0x3fffffffffffffff
//z.Mul(z, t1)
p256Mul(out, out, t1)
// Step 71: t1 = x^0xfffffffe00000000
//for s := 0; s < 2; s++ {
// t1.Sqr(t1)
//}
p256Sqr(t1, t1, 2)
// Step 72: t2 = x^0xfffffffffffffffc
//t2.Mul(t2, t1)
p256Mul(t2, t2, t1)
// Step 73: t0 = x^0xffffffffffffffff
//t0.Mul(t0, t2)
p256Mul(t0, t0, t2)
// Step 105: t1 = x^0xfffffffe0000000000000000
//for s := 0; s < 32; s++ {
// t1.Sqr(t1)
//}
p256Sqr(t1, t1, 32)
// Step 106: t1 = x^0xfffffffeffffffffffffffff
//t1.Mul(t0, t1)
p256Mul(t1, t0, t1)
// Step 170: t1 = x^0xfffffffeffffffffffffffff0000000000000000
//for s := 0; s < 64; s++ {
// t1.Sqr(t1)
//}
p256Sqr(t1, t1, 64)
// Step 171: t0 = x^0xfffffffeffffffffffffffffffffffffffffffff
//t0.Mul(t0, t1)
p256Mul(t0, t0, t1)
// Step 265: t0 = x^0x3fffffffbfffffffffffffffffffffffffffffffc00000000000000000000000
//for s := 0; s < 94; s++ {
// t0.Sqr(t0)
//}
p256Sqr(t0, t0, 94)
// Step 266: z = x^0x3fffffffbfffffffffffffffffffffffffffffffc00000003fffffffffffffff
//z.Mul(z, t0)
p256Mul(out, out, t0)
// Step 268: z = x^0xfffffffeffffffffffffffffffffffffffffffff00000000fffffffffffffffc
//for s := 0; s < 2; s++ {
// z.Sqr(z)
//}
p256Sqr(out, out, 2)
// Step 269: z = x^0xfffffffeffffffffffffffffffffffffffffffff00000000fffffffffffffffd
//z.Mul(x, z)
p256Mul(out, in, out)
}
// This function takes those six bits as an integer (0 .. 63), writing the
// recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute
// value, in the range 0 .. 16). Note that this integer essentially provides
// the input bits "shifted to the left" by one position: for example, the input
// to compute the least significant recoded digit, given that there's no bit
// b_-1, has to be b_4 b_3 b_2 b_1 b_0 0.
//
// Reference:
// https://github.com/openssl/openssl/blob/master/crypto/ec/ecp_nistputil.c
// https://github.com/google/boringssl/blob/master/crypto/fipsmodule/ec/util.c
func boothW5(in uint) (int, int) {
var s uint = ^((in >> 5) - 1) // sets all bits to MSB(in), 'in' seen as 6-bit value
var d uint = (1 << 6) - in - 1 // d = 63 - in, or d = ^in & 0x3f
d = (d & s) | (in & (^s)) // d = in if in < 2^5; otherwise, d = 63 - in
d = (d >> 1) + (d & 1) // d = (d + 1) / 2
return int(d), int(s & 1)
}
func boothW6(in uint) (int, int) {
var s uint = ^((in >> 6) - 1)
var d uint = (1 << 7) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func (p *SM2P256Point) p256BaseMult(scalar *p256OrdElement) {
var t0 p256AffinePoint
wvalue := (scalar[0] << 1) & 0x7f
sel, sign := boothW6(uint(wvalue))
p256SelectAffine(&t0, &p256Precomputed[0], sel)
p.x, p.y, p.z = t0.x, t0.y, p256One
p256NegCond(&p.y, sign)
index := uint(5)
zero := sel
for i := 1; i < 43; i++ {
if index >= 192 {
wvalue = (scalar[3] >> (index & 63)) & 0x7f
} else if index >= 128 {
wvalue = ((scalar[2] >> (index & 63)) + (scalar[3] << (64 - (index & 63)))) & 0x7f
} else if index >= 64 {
wvalue = ((scalar[1] >> (index & 63)) + (scalar[2] << (64 - (index & 63)))) & 0x7f
} else {
wvalue = ((scalar[0] >> (index & 63)) + (scalar[1] << (64 - (index & 63)))) & 0x7f
}
index += 6
sel, sign = boothW6(uint(wvalue))
p256SelectAffine(&t0, &p256Precomputed[i], sel)
p256PointAddAffineAsm(p, p, &t0, sign, sel, zero)
zero |= sel
}
// If the whole scalar was zero, set to the point at infinity.
p256MovCond(p, p, NewSM2P256Point(), zero)
}
func (p *SM2P256Point) p256ScalarMult(scalar *p256OrdElement) {
// precomp is a table of precomputed points that stores powers of p
// from p^1 to p^32.
var precomp p256Table
var t0, t1 SM2P256Point
// Prepare the table
precomp[0] = *p // 1
p256PointDoubleAsm(&precomp[1], p) //2
p256PointAddAsm(&precomp[2], &precomp[1], p) //3
p256PointDoubleAsm(&precomp[3], &precomp[1]) //4
p256PointAddAsm(&precomp[4], &precomp[3], p) //5
p256PointDoubleAsm(&precomp[5], &precomp[2]) //6
p256PointAddAsm(&precomp[6], &precomp[5], p) //7
p256PointDoubleAsm(&precomp[7], &precomp[3]) //8
p256PointAddAsm(&precomp[8], &precomp[7], p) //9
p256PointDoubleAsm(&precomp[9], &precomp[4]) //10
p256PointAddAsm(&precomp[10], &precomp[9], p) //11
p256PointDoubleAsm(&precomp[11], &precomp[5]) //12
p256PointAddAsm(&precomp[12], &precomp[11], p) //13
p256PointDoubleAsm(&precomp[13], &precomp[6]) //14
p256PointAddAsm(&precomp[14], &precomp[13], p) //15
p256PointDoubleAsm(&precomp[15], &precomp[7]) //16
p256PointAddAsm(&precomp[16], &precomp[15], p) //17
p256PointDoubleAsm(&precomp[17], &precomp[8]) //18
p256PointAddAsm(&precomp[18], &precomp[17], p) //19
p256PointDoubleAsm(&precomp[19], &precomp[9]) //20
p256PointAddAsm(&precomp[20], &precomp[19], p) //21
p256PointDoubleAsm(&precomp[21], &precomp[10]) //22
p256PointAddAsm(&precomp[22], &precomp[21], p) //23
p256PointDoubleAsm(&precomp[23], &precomp[11]) //24
p256PointAddAsm(&precomp[24], &precomp[23], p) //25
p256PointDoubleAsm(&precomp[25], &precomp[12]) //26
p256PointAddAsm(&precomp[26], &precomp[25], p) //27
p256PointDoubleAsm(&precomp[27], &precomp[13]) //28
p256PointAddAsm(&precomp[28], &precomp[27], p) //29
p256PointDoubleAsm(&precomp[29], &precomp[14]) //30
p256PointAddAsm(&precomp[30], &precomp[29], p) //31
p256PointDoubleAsm(&precomp[31], &precomp[15]) //32
// Start scanning the window from top bit
index := uint(251)
var sel, sign int
wvalue := (scalar[index/64] >> (index % 64)) & 0x7f
sel, _ = boothW6(uint(wvalue))
p256Select(p, &precomp, sel, 32)
zero := sel
for index > 5 {
index -= 6
p256PointDouble6TimesAsm(p, p)
if index >= 192 {
wvalue = (scalar[3] >> (index & 63)) & 0x7f
} else if index >= 128 {
wvalue = ((scalar[2] >> (index & 63)) + (scalar[3] << (64 - (index & 63)))) & 0x7f
} else if index >= 64 {
wvalue = ((scalar[1] >> (index & 63)) + (scalar[2] << (64 - (index & 63)))) & 0x7f
} else {
wvalue = ((scalar[0] >> (index & 63)) + (scalar[1] << (64 - (index & 63)))) & 0x7f
}
sel, sign = boothW6(uint(wvalue))
p256Select(&t0, &precomp, sel, 32)
p256NegCond(&t0.y, sign)
p256PointAddAsm(&t1, p, &t0)
p256MovCond(&t1, &t1, p, sel)
p256MovCond(p, &t1, &t0, zero)
zero |= sel
}
p256PointDouble6TimesAsm(p, p)
wvalue = (scalar[0] << 1) & 0x7f
sel, sign = boothW6(uint(wvalue))
p256Select(&t0, &precomp, sel, 32)
p256NegCond(&t0.y, sign)
p256PointAddAsm(&t1, p, &t0)
p256MovCond(&t1, &t1, p, sel)
p256MovCond(p, &t1, &t0, zero)
}