2024-06-25 17:41:14 +08:00
# [go-pkcs12](https://github.com/emmansun/go-pkcs12)应用指南
[PKCS #12: Personal Information Exchange Syntax v1.1 ](https://datatracker.ietf.org/doc/html/rfc7292 ), PKCS12目前似乎没有相应的国密标准。
定制PKCS12的目的是:
2024-07-03 08:20:11 +08:00
1. 可以处理**SM2**私钥和证书。
2. 可以替代、使用一些商密算法,主要是**SM3**和**SM4**。
2024-06-25 17:41:14 +08:00
## PKCS#12的解析
[go-pkcs12 ](https://github.com/emmansun/go-pkcs12 )提供三个方法:
| 方法 | 适用 | 具体说明 |
| :--- | :--- | :--- |
| ```DecodeChain` `` | 抽取出一个私钥、一个相应证书以及证书链 | 私钥和相应证书必须存在,否则报错 |
| ```Decode` `` | 抽取出一个私钥、一个相应证书 | 私钥和相应证书必须存在,否则报错;并且**不能有证书链存在**。 |
| ```DecodeTrustStore` `` | 抽取出证书链 | 只支持java的TrustStore, [Difference Between a Java Keystore and a Truststore ](https://www.baeldung.com/java-keystore-truststore-difference ) |
### 解码能处理的算法
#### 证书及私钥加密算法
2024-07-03 08:20:11 +08:00
这里主要是**PBES(Password-Based Encryption Scheme)**, 它主要涉及几方面:
1. 密码处理
2. 从密码派生出加密密钥
3. 具体对称加密算法
**PBES-PKCS12**
2024-06-25 17:41:14 +08:00
* pbeWithSHAAnd3-KeyTripleDES-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 3}
* pbeWithSHAAnd128BitRC2-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 5}
* pbewithSHAAnd40BitRC2-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 6}
2024-07-03 08:20:11 +08:00
不同于**PKCS#5 v1.5**中的**PBES1**,上述这些是**PKCS#12 **的独有算法,特别是它的**KDF**和**密码处理**。
**PBES1**
PBES1属于老旧遗留算法, 目前版本未实现。
2024-06-25 17:41:14 +08:00
**PBES2**
2024-07-03 08:20:11 +08:00
由两部分组成,分别为**KDF**和加密算法。目前KDF只支持**KDF2**, KDF2中支持的**PRF**方法有:
2024-06-25 17:41:14 +08:00
* id-hmacWithSHA1
* id-hmacWithSHA256
* id-hmacWithSM3
具体可参考[PKCS #5: Password-Based Cryptography Specification Version 2.1 ](https://datatracker.ietf.org/doc/html/rfc8018 )
加密算法有:
* AES-CBC-Pad, 密钥长度支持16/24/32字节
* SM4-CBC-Pad, 密钥长度支持16字节
2024-07-03 11:11:09 +08:00
#### 数据完整性保护(PBMAC)
这里只支持基于密码的完整性保护:**PKCS12-KDF + HMAC**。支持的HASH算法有:
2024-06-25 17:41:14 +08:00
* SHA1
* SHA256
* SM3
2024-07-03 11:11:09 +08:00
**PBMAC**目前的实现还是基于**PKCS12-KDF**,将来看情况是否要实现**PBMAC1**,主要看**OpenSSL**的支持进度:
* [Support FIPS-compliant PKCS#12 files and create them by default in FIPS mode ](https://github.com/openssl/openssl/issues/24546 )
* [RFC 9579 implementation: add PBMAC1 with PBKDF2 to PKCS#12 ](https://github.com/openssl/openssl/pull/24577 )
2024-07-05 15:31:13 +08:00
从**v0.4.1**开始支持**PBMAC1**。
2024-06-25 17:41:14 +08:00
## PKCS#12的生成
目前只支持下列几种,不支持自由定义:
* ```LegacyRC2` ``, 加密使用PKCS12特有算法; 对证书使用RC2加密, 对私钥使用3DES加密, 一致性保证使用HMAC-SHA1。
* ```LegacyDES` ``, 加密使用PKCS12特有算法; 对证书和私钥都是用3DES加密, 一致性保证使用HMAC-SHA1。
* ```Passwordless` ``,无加密、一致性保证模式。
* ```Modern2023` ``, 对应OpenSSL 3+ 默认, 加密使用AES-256-CBC with PBKDF2, 一致性保证使用HMAC-SHA256。
* ```ShangMi2024` ``,这个估计目前没什么互操作性。
目前的全局函数```Encode` `` / ` ``EncodeTrustStore` ``使用**LegacyRC2**编码器。
```go
// LegacyRC2 encodes PKCS#12 files using weak algorithms that were
// traditionally used in PKCS#12 files, including those produced
// by OpenSSL before 3.0.0, go-pkcs12 before 0.3.0, and Java when
// keystore.pkcs12.legacy is defined. Specifically, certificates
// are encrypted using PBE with RC2, and keys are encrypted using PBE
// with 3DES, using keys derived with 2048 iterations of HMAC-SHA-1.
// MACs use HMAC-SHA-1 with keys derived with 1 iteration of HMAC-SHA-1.
//
// Due to the weak encryption, it is STRONGLY RECOMMENDED that you use [DefaultPassword]
// when encoding PKCS#12 files using this encoder, and protect the PKCS#12 files
// using other means.
//
// By default, OpenSSL 3 can't decode PKCS#12 files created using this encoder.
// For better compatibility, use [LegacyDES]. For better security, use
// [Modern2023].
var LegacyRC2 = & Encoder{
macAlgorithm: oidSHA1,
certAlgorithm: oidPBEWithSHAAnd40BitRC2CBC,
keyAlgorithm: oidPBEWithSHAAnd3KeyTripleDESCBC,
kdfPrf: nil,
encryptionScheme: nil,
macIterations: 1,
encryptionIterations: 2048,
saltLen: 8,
rand: rand.Reader,
}
// LegacyDES encodes PKCS#12 files using weak algorithms that are
// supported by a wide variety of software. Certificates and keys
// are encrypted using PBE with 3DES using keys derived with 2048
// iterations of HMAC-SHA-1. MACs use HMAC-SHA-1 with keys derived
// with 1 iteration of HMAC-SHA-1. These are the same parameters
// used by OpenSSL's -descert option. As of 2023, this encoder is
// likely to produce files that can be read by the most software.
//
// Due to the weak encryption, it is STRONGLY RECOMMENDED that you use [DefaultPassword]
// when encoding PKCS#12 files using this encoder, and protect the PKCS#12 files
// using other means. To create more secure PKCS#12 files, use [Modern2023].
var LegacyDES = & Encoder{
macAlgorithm: oidSHA1,
certAlgorithm: oidPBEWithSHAAnd3KeyTripleDESCBC,
keyAlgorithm: oidPBEWithSHAAnd3KeyTripleDESCBC,
kdfPrf: nil,
encryptionScheme: nil,
macIterations: 1,
encryptionIterations: 2048,
saltLen: 8,
rand: rand.Reader,
}
// Passwordless encodes PKCS#12 files without any encryption or MACs.
// A lot of software has trouble reading such files, so it's probably only
// useful for creating Java trust stores using [Encoder.EncodeTrustStore]
// or [Encoder.EncodeTrustStoreEntries].
//
// When using this encoder, you MUST specify an empty password.
var Passwordless = & Encoder{
macAlgorithm: nil,
certAlgorithm: nil,
keyAlgorithm: nil,
kdfPrf: nil,
encryptionScheme: nil,
rand: rand.Reader,
}
// Modern2023 encodes PKCS#12 files using algorithms that are considered modern
// as of 2023. Private keys and certificates are encrypted using PBES2 with
// PBKDF2-HMAC-SHA-256 and AES-256-CBC. The MAC algorithm is HMAC-SHA-2. These
// are the same algorithms used by OpenSSL 3 (by default), Java 20 (by default),
// and Windows Server 2019 (when "stronger" is used).
//
// Files produced with this encoder can be read by OpenSSL 1.1.1 and higher,
// Java 12 and higher, and Windows Server 2019 and higher.
//
// For passwords, it is RECOMMENDED that you do one of the following:
// 1) Use [DefaultPassword] and protect the file using other means, or
// 2) Use a high-entropy password, such as one generated with `openssl rand -hex 16` .
//
// You SHOULD NOT use a lower-entropy password with this encoder because the number of KDF
// iterations is only 2048 and doesn't provide meaningful protection against
// brute-forcing. You can increase the number of iterations using [Encoder.WithIterations],
// but as https://neilmadden.blog/2023/01/09/on-pbkdf2-iterations/ explains, this doesn't
// help as much as you think.
var Modern2023 = & Encoder{
macAlgorithm: oidSHA256,
certAlgorithm: oidPBES2,
keyAlgorithm: oidPBES2,
kdfPrf: oidHmacWithSHA256,
encryptionScheme: oidAES256CBC,
macIterations: 2048,
encryptionIterations: 2048,
saltLen: 16,
rand: rand.Reader,
}
// ShangMi2024 encodes PKCS#12 files using algorithms that are all ShangMi.
// Private keys and certificates are encrypted using PBES2 with PBKDF2-HMAC-SM3 and SM4-CBC.
2024-07-05 15:31:13 +08:00
// The MAC algorithm is PBMAC1-HMAC-SM3.
2024-06-25 17:41:14 +08:00
var ShangMi2024 = & Encoder{
2024-07-05 15:31:13 +08:00
macAlgorithm: oidPBMAC1,
2024-06-25 17:41:14 +08:00
certAlgorithm: oidPBES2,
keyAlgorithm: oidPBES2,
kdfPrf: oidHmacWithSM3,
encryptionScheme: oidSM4CBC,
2024-07-05 15:31:13 +08:00
messageAuthScheme: oidHmacWithSM3,
2024-06-25 17:41:14 +08:00
macIterations: 2048,
encryptionIterations: 2048,
saltLen: 16,
rand: rand.Reader,
}
```
2024-07-05 15:31:13 +08:00
## 解析加密的PKCS#8私钥
[go-pkcs12 ](https://github.com/emmansun/go-pkcs12 ) 也提供了```ParsePKCS8PrivateKey` ``方法,相比**pkcs8**的类似方法,这里特别支持**PBES-PKCS12**加密算法。
* PBE-SHA1-RC2-128
* PBE-SHA1-RC2-40
* PBE-SHA1-3DES