mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-26 12:16:20 +08:00
194 lines
3.8 KiB
Go
194 lines
3.8 KiB
Go
![]() |
//go:build (!amd64) || purego
|
||
|
// +build !amd64 purego
|
||
|
|
||
|
package bn256
|
||
|
|
||
|
func gfp2Mul(c, a, b *gfP2) {
|
||
|
tmp := &gfP2{}
|
||
|
tx := &tmp.x
|
||
|
ty := &tmp.y
|
||
|
v0, v1 := &gfP{}, &gfP{}
|
||
|
|
||
|
gfpMul(v0, &a.y, &b.y)
|
||
|
gfpMul(v1, &a.x, &b.x)
|
||
|
|
||
|
gfpAdd(tx, &a.x, &a.y)
|
||
|
gfpAdd(ty, &b.x, &b.y)
|
||
|
gfpMul(tx, tx, ty)
|
||
|
gfpSub(tx, tx, v0)
|
||
|
gfpSub(tx, tx, v1)
|
||
|
|
||
|
gfpSub(ty, v0, v1)
|
||
|
gfpSub(ty, ty, v1)
|
||
|
|
||
|
gfp2Copy(c, tmp)
|
||
|
}
|
||
|
|
||
|
func gfp2MulU(c, a, b *gfP2) {
|
||
|
tmp := &gfP2{}
|
||
|
tx := &tmp.x
|
||
|
ty := &tmp.y
|
||
|
v0, v1 := &gfP{}, &gfP{}
|
||
|
|
||
|
gfpMul(v0, &a.y, &b.y)
|
||
|
gfpMul(v1, &a.x, &b.x)
|
||
|
|
||
|
gfpAdd(tx, &a.x, &a.y)
|
||
|
gfpAdd(ty, &b.x, &b.y)
|
||
|
|
||
|
gfpMul(ty, tx, ty)
|
||
|
gfpSub(ty, ty, v0)
|
||
|
gfpSub(ty, ty, v1)
|
||
|
gfpDouble(ty, ty)
|
||
|
gfpNeg(ty, ty)
|
||
|
|
||
|
gfpSub(tx, v0, v1)
|
||
|
gfpSub(tx, tx, v1)
|
||
|
|
||
|
gfp2Copy(c, tmp)
|
||
|
}
|
||
|
|
||
|
func gfp2Square(c, a *gfP2) {
|
||
|
tmp := &gfP2{}
|
||
|
tx := &tmp.x
|
||
|
ty := &tmp.y
|
||
|
|
||
|
gfpAdd(ty, &a.x, &a.y)
|
||
|
gfpDouble(tx, &a.x)
|
||
|
gfpSub(tx, &a.y, tx)
|
||
|
gfpMul(ty, tx, ty)
|
||
|
gfpMul(tx, &a.x, &a.y)
|
||
|
gfpAdd(ty, tx, ty)
|
||
|
gfpDouble(tx, tx)
|
||
|
|
||
|
gfp2Copy(c, tmp)
|
||
|
}
|
||
|
|
||
|
func gfp2SquareU(c, a *gfP2) {
|
||
|
tmp := &gfP2{}
|
||
|
tx := &tmp.x
|
||
|
ty := &tmp.y
|
||
|
|
||
|
gfpAdd(tx, &a.x, &a.y)
|
||
|
gfpDouble(ty, &a.x)
|
||
|
gfpSub(ty, &a.y, ty)
|
||
|
gfpMul(tx, tx, ty)
|
||
|
gfpMul(ty, &a.x, &a.y)
|
||
|
gfpAdd(tx, tx, ty)
|
||
|
gfpDouble(ty, ty)
|
||
|
gfpDouble(ty, ty)
|
||
|
gfpNeg(ty, ty)
|
||
|
|
||
|
gfp2Copy(c, tmp)
|
||
|
}
|
||
|
|
||
|
func curvePointDouble(c, a *curvePoint) {
|
||
|
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
||
|
A, B, C := &gfP{}, &gfP{}, &gfP{}
|
||
|
gfpSqr(A, &a.x, 1)
|
||
|
gfpSqr(B, &a.y, 1)
|
||
|
gfpSqr(C, B, 1)
|
||
|
|
||
|
t := &gfP{}
|
||
|
gfpAdd(B, &a.x, B)
|
||
|
gfpSqr(t, B, 1)
|
||
|
gfpSub(B, t, A)
|
||
|
gfpSub(t, B, C)
|
||
|
|
||
|
d, e := &gfP{}, &gfP{}
|
||
|
gfpDouble(d, t)
|
||
|
gfpDouble(B, A)
|
||
|
gfpAdd(e, B, A)
|
||
|
gfpSqr(A, e, 1)
|
||
|
|
||
|
gfpDouble(B, d)
|
||
|
gfpSub(&c.x, A, B)
|
||
|
|
||
|
gfpMul(&c.z, &a.y, &a.z)
|
||
|
gfpDouble(&c.z, &c.z)
|
||
|
|
||
|
gfpDouble(B, C)
|
||
|
gfpDouble(t, B)
|
||
|
gfpDouble(B, t)
|
||
|
gfpSub(&c.y, d, &c.x)
|
||
|
gfpMul(t, e, &c.y)
|
||
|
gfpSub(&c.y, t, B)
|
||
|
}
|
||
|
|
||
|
func curvePointAdd(c, a, b *curvePoint) int {
|
||
|
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
||
|
var pointEq int
|
||
|
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
|
||
|
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
|
||
|
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
|
||
|
z12, z22 := &gfP{}, &gfP{}
|
||
|
gfpSqr(z12, &a.z, 1)
|
||
|
gfpSqr(z22, &b.z, 1)
|
||
|
|
||
|
u1, u2 := &gfP{}, &gfP{}
|
||
|
gfpMul(u1, &a.x, z22)
|
||
|
gfpMul(u2, &b.x, z12)
|
||
|
|
||
|
t, s1 := &gfP{}, &gfP{}
|
||
|
gfpMul(t, &b.z, z22)
|
||
|
gfpMul(s1, &a.y, t)
|
||
|
|
||
|
s2 := &gfP{}
|
||
|
gfpMul(t, &a.z, z12)
|
||
|
gfpMul(s2, &b.y, t)
|
||
|
|
||
|
// Compute x = (2h)²(s²-u1-u2)
|
||
|
// where s = (s2-s1)/(u2-u1) is the slope of the line through
|
||
|
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
|
||
|
// This is also:
|
||
|
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
|
||
|
// = r² - j - 2v
|
||
|
// with the notations below.
|
||
|
h := &gfP{}
|
||
|
gfpSub(h, u2, u1)
|
||
|
|
||
|
gfpDouble(t, h)
|
||
|
// i = 4h²
|
||
|
i := &gfP{}
|
||
|
gfpSqr(i, t, 1)
|
||
|
// j = 4h³
|
||
|
j := &gfP{}
|
||
|
gfpMul(j, h, i)
|
||
|
|
||
|
gfpSub(t, s2, s1)
|
||
|
|
||
|
pointEq = h.Equal(zero) & t.Equal(zero)
|
||
|
|
||
|
r := &gfP{}
|
||
|
gfpDouble(r, t)
|
||
|
|
||
|
v := &gfP{}
|
||
|
gfpMul(v, u1, i)
|
||
|
|
||
|
// t4 = 4(s2-s1)²
|
||
|
t4, t6 := &gfP{}, &gfP{}
|
||
|
gfpSqr(t4, r, 1)
|
||
|
gfpDouble(t, v)
|
||
|
gfpSub(t6, t4, j)
|
||
|
|
||
|
gfpSub(&c.x, t6, t)
|
||
|
|
||
|
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
|
||
|
// This is also
|
||
|
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
|
||
|
gfpSub(t, v, &c.x) // t7
|
||
|
gfpMul(t4, s1, j) // t8
|
||
|
gfpDouble(t6, t4) // t9
|
||
|
gfpMul(t4, r, t) // t10
|
||
|
gfpSub(&c.y, t4, t6)
|
||
|
|
||
|
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
|
||
|
gfpAdd(t, &a.z, &b.z) // t11
|
||
|
gfpSqr(t4, t, 1) // t12
|
||
|
gfpSub(t, t4, z12) // t13
|
||
|
gfpSub(t4, t, z22) // t14
|
||
|
gfpMul(&c.z, t4, h)
|
||
|
|
||
|
return pointEq
|
||
|
}
|