ShangMi (SM) cipher suites for Golang, referred to as **GMSM**, is a secure, high-performance, easy-to-use Golang ShangMi (SM) cipher suites library, covering public algorithms SM2/SM3/SM4/SM9/ZUC.
- **SM2** - This is a SM2 sm2p256v1 implementation whose performance is similar like golang native NIST P256 under **amd64**, **arm64**, **s390x** and **ppc64le**, for implementation detail, please refer [SM2实现细节](https://github.com/emmansun/gmsm/wiki/SM2%E6%80%A7%E8%83%BD%E4%BC%98%E5%8C%96). It supports ShangMi sm2 digital signature, public key encryption algorithm and also key exchange.
- **SM3** - This is also a SM3 implementation whose performance is similar like golang native SHA 256 with SIMD under **amd64** and **arm64**, for implementation detail, please refer [SM3性能优化](https://github.com/emmansun/gmsm/wiki/SM3%E6%80%A7%E8%83%BD%E4%BC%98%E5%8C%96). It also provides A64 cryptographic instructions SM3 tested with QEMU.
- **SM4** - For SM4 implementation, SIMD & AES-NI are used under **amd64** and **arm64**, for detail please refer [SM4性能优化](https://github.com/emmansun/gmsm/wiki/SM4%E6%80%A7%E8%83%BD%E4%BC%98%E5%8C%96). It is optimized for **ECB/CBC/GCM/XTS** operation modes. It also provides A64 cryptographic instructions SM4 tested with QEMU.
- **ZUC** - For ZUC implementation, SIMD, AES-NI and CLMUL are used under **amd64** and **arm64**, for detail please refer [Efficient Software Implementations of ZUC](https://github.com/emmansun/gmsm/wiki/Efficient-Software-Implementations-of-ZUC)
- **CIPHER** - ECB/CCM/XTS/HCTR/BC/OFBNLF operation modes, XTS mode also supports **GB/T 17964-2021**. Current XTS mode implementation is **NOT** concurrent safe! **BC** and **OFBNLF** are legacy operation modes, **HCTR** is new operation mode in **GB/T 17964-2021**. **BC** operation mode is similar like **CBC**, there is no room for performance optimization in **OFBNLF** operation mode.
- **ECDH** - a similar implementation of golang ECDH that supports SM2 ECDH & SM2MQV without usage of **big.Int**, a replacement of SM2 key exchange. For detail, pleaes refer [is my code constant time?](https://github.com/emmansun/gmsm/wiki/is-my-code-constant-time%3F)
- **DRBG** - Random Number Generation Using Deterministic Random Bit Generators, for detail, please reference **NIST Special Publication 800-90A** and **GM/T 0105-2021**: CTR-DRBG using derivation function and HASH-DRBG. NIST related implementations are tested with part of NIST provided test vectors. It's **NOT** concurrent safe! You can also use [randomness](https://github.com/Trisia/randomness) tool to check the generated random bits.
- **[TLCP](https://github.com/Trisia/gotlcp)** - An implementation of **GB/T 38636-2020 Information security technology Transport Layer Cryptography Protocol (TLCP)**.
- **[Trisia/Randomness](https://github.com/Trisia/randomness)** - An implementation of **GM/T 0005-2021 Randomness test specification**.
- **[PKCS12](https://github.com/emmansun/go-pkcs12)** - pkcs12 supports ShangMi, a fork of [SSLMate/go-pkcs12](https://github.com/SSLMate/go-pkcs12).
- **[MKSMCERT](https://github.com/emmansun/mksmcert)** - A simple tool for making locally-trusted development ShangMi certificates, a fork of [FiloSottile/mkcert](https://github.com/FiloSottile/mkcert).
The basic architecture, design and some codes are from [golang crypto](https://github.com/golang/go/commits/master/src/crypto).
The SM4 amd64 SIMD AES-NI implementation is inspired by code from [mjosaarinen/sm4ni](https://github.com/mjosaarinen/sm4ni).
The original SM9/BN256 version is based on code from [cloudflare/bn256](https://github.com/cloudflare/bn256).
The ZUC amd64 SIMD AES-NI, CLMUL implementation is inspired by code from [Intel(R) Multi-Buffer Crypto for IPsec Library](https://github.com/intel/intel-ipsec-mb/).
The pkcs7 is based on code from [mozilla-services/pkcs7](https://github.com/mozilla-services/pkcs7), which has been archived by the owner on Feb 10, 2024.
This library is not fully audited and is offered as-is, and without a guarantee. Therefore, it is expected that changes in the code, repository, and API occur in the future. We recommend to take caution before using this library in a production application.