You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
vlmcsd/rpc.c

1114 lines
33 KiB
C

#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE
#endif // _DEFAULT_SOURCE
#ifndef CONFIG
#define CONFIG "config.h"
#endif // CONFIG
#include CONFIG
#ifndef USE_MSRPC
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <ctype.h>
#include <time.h>
#if !defined(_WIN32)
#include <sys/socket.h>
#include <netdb.h>
#endif
#include "rpc.h"
#include "output.h"
#include "crypto.h"
#include "endian.h"
#include "helpers.h"
#include "network.h"
#include "shared_globals.h"
/* Forwards */
static int checkRpcHeader(const RPC_HEADER *const Header, const BYTE desiredPacketType, const PRINTFUNC p);
/* Data definitions */
// All GUIDs are defined as BYTE[16] here. No big-endian/little-endian byteswapping required.
static const BYTE TransferSyntaxNDR32[] = {
0x04, 0x5D, 0x88, 0x8A, 0xEB, 0x1C, 0xC9, 0x11, 0x9F, 0xE8, 0x08, 0x00, 0x2B, 0x10, 0x48, 0x60
};
static const BYTE InterfaceUuid[] = {
0x75, 0x21, 0xc8, 0x51, 0x4e, 0x84, 0x50, 0x47, 0xB0, 0xD8, 0xEC, 0x25, 0x55, 0x55, 0xBC, 0x06
};
static const BYTE TransferSyntaxNDR64[] = {
0x33, 0x05, 0x71, 0x71, 0xba, 0xbe, 0x37, 0x49, 0x83, 0x19, 0xb5, 0xdb, 0xef, 0x9c, 0xcc, 0x36
};
static const BYTE BindTimeFeatureNegotiation[] = {
0x2c, 0x1c, 0xb7, 0x6c, 0x12, 0x98, 0x40, 0x45, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
//
// Dispatch RPC payload to kms.c
//
typedef int (*CreateResponse_t)(const void *const, void *const, const char* const);
static const struct {
unsigned int RequestSize;
CreateResponse_t CreateResponse;
} _Versions[] = {
{ sizeof(REQUEST_V4), (CreateResponse_t) CreateResponseV4 },
{ sizeof(REQUEST_V6), (CreateResponse_t) CreateResponseV6 },
{ sizeof(REQUEST_V6), (CreateResponse_t) CreateResponseV6 }
};
RPC_FLAGS RpcFlags;
static int_fast8_t firstPacketSent;
//
// RPC request (server)
//
#if defined(_PEDANTIC) && !defined(NO_LOG)
static void CheckRpcRequest(const RPC_REQUEST64 *const Request, const unsigned int len, WORD* NdrCtx, WORD* Ndr64Ctx, WORD Ctx)
{
uint_fast8_t kmsMajorVersion;
uint32_t requestSize = Ctx != *Ndr64Ctx ? sizeof(RPC_REQUEST) : sizeof(RPC_REQUEST64);
if (len < requestSize)
{
logger("Fatal: RPC request (including header) must be at least %i bytes but is only %i bytes.\n",
(int)(sizeof(RPC_HEADER) + requestSize),
(int)(len + sizeof(RPC_HEADER))
);
return;
}
if (len < requestSize + sizeof(DWORD))
{
logger("Fatal: KMS Request too small to contain version info (less than 4 bytes).\n");
return;
}
if (Ctx != *Ndr64Ctx)
kmsMajorVersion = LE16(((WORD*)Request->Ndr.Data)[1]);
else
kmsMajorVersion = LE16(((WORD*)Request->Ndr64.Data)[1]);
if (kmsMajorVersion > 6)
{
logger("Fatal: KMSv%u is not supported.\n", (unsigned int)kmsMajorVersion);
}
else
{
if (len >_Versions[kmsMajorVersion].RequestSize + requestSize)
logger("Warning: %u excess bytes in RPC request.\n",
len - _Versions[kmsMajorVersion].RequestSize
);
}
if (Ctx != *Ndr64Ctx && Ctx != *NdrCtx)
logger("Warning: Context id should be %u (NDR32) or %u (NDR64) but is %u.\n",
(unsigned int)*NdrCtx,
(unsigned int)*Ndr64Ctx,
Ctx
);
if (Request->Opnum)
logger("Warning: OpNum should be 0 but is %u.\n",
(unsigned int)LE16(Request->Opnum)
);
if (LE32(Request->AllocHint) != len - sizeof(RPC_REQUEST) + sizeof(Request->Ndr))
logger("Warning: Allocation hint should be %u but is %u.\n",
len + sizeof(Request->Ndr),
LE32(Request->AllocHint)
);
if (Ctx != *Ndr64Ctx)
{
if (LE32(Request->Ndr.DataLength) != len - sizeof(RPC_REQUEST))
logger("Warning: NDR32 data length field should be %u but is %u.\n",
len - sizeof(RPC_REQUEST),
LE32(Request->Ndr.DataLength)
);
if (LE32(Request->Ndr.DataSizeIs) != len - sizeof(RPC_REQUEST))
logger("Warning: NDR32 data size field should be %u but is %u.\n",
len - sizeof(RPC_REQUEST),
LE32(Request->Ndr.DataSizeIs)
);
}
else
{
if (LE64(Request->Ndr64.DataLength) != len - sizeof(RPC_REQUEST64))
logger("Warning: NDR32 data length field should be %u but is %u.\n",
len - sizeof(RPC_REQUEST) + sizeof(Request->Ndr),
LE64(Request->Ndr64.DataLength)
);
if (LE64(Request->Ndr64.DataSizeIs) != len - sizeof(RPC_REQUEST64))
logger("Warning: NDR32 data size field should be %u but is %u.\n",
len - sizeof(RPC_REQUEST64),
LE64(Request->Ndr64.DataSizeIs)
);
}
}
#endif // defined(_PEDANTIC) && !defined(NO_LOG)
/*
* check RPC request for (somewhat) correct size
* allow any size that does not cause CreateResponse to fail badly
*/
static unsigned int checkRpcRequestSize(const RPC_REQUEST64 *const Request, const unsigned int requestSize, WORD* NdrCtx, WORD* Ndr64Ctx)
{
WORD Ctx = LE16(Request->ContextId);
# if defined(_PEDANTIC) && !defined(NO_LOG)
CheckRpcRequest(Request, requestSize, NdrCtx, Ndr64Ctx, Ctx);
# endif // defined(_PEDANTIC) && !defined(NO_LOG)
// Anything that is smaller than a v4 request is illegal
if (requestSize < sizeof(REQUEST_V4) + (Ctx != *Ndr64Ctx ? sizeof(RPC_REQUEST) : sizeof(RPC_REQUEST64))) return 0;
// Get KMS major version
uint_fast16_t _v;
if (Ctx != *Ndr64Ctx)
_v = LE16(((WORD*)Request->Ndr.Data)[1]) - 4;
else
_v = LE16(((WORD*)Request->Ndr64.Data)[1]) - 4;
// Only KMS v4, v5 and v6 are supported
if (_v >= vlmcsd_countof(_Versions))
{
# ifndef NO_LOG
logger("Fatal: KMSv%i unsupported\n", _v + 4);
# endif // NO_LOG
return 0;
}
// Could check for equality but allow bigger requests to support buggy RPC clients (e.g. wine)
// Buffer overrun is check by caller.
return (requestSize >= _Versions[_v].RequestSize);
}
/*
* Handles the actual KMS request from the client.
* Calls KMS functions (CreateResponseV4 or CreateResponseV6) in kms.c
* Returns size of the KMS response packet or 0 on failure.
*
* The RPC packet size (excluding header) is actually in Response->AllocHint
*/
static int rpcRequest(const RPC_REQUEST64 *const Request, RPC_RESPONSE64 *const Response, const DWORD RpcAssocGroup_unused, const SOCKET sock_unused, WORD* NdrCtx, WORD* Ndr64Ctx, BYTE packetType, const char* const ipstr)
{
uint_fast16_t _v;
int ResponseSize;
WORD Ctx = LE16(Request->ContextId);
BYTE* requestData;
BYTE* responseData;
BYTE* pRpcReturnCode;
int len;
if (Ctx != *Ndr64Ctx)
{
requestData = (BYTE*)&Request->Ndr.Data;
responseData = (BYTE*)&Response->Ndr.Data;
}
else
{
requestData = (BYTE*)&Request->Ndr64.Data;
responseData = (BYTE*)&Response->Ndr64.Data;
}
_v = LE16(((WORD*)requestData)[1]) - 4;
if (!(ResponseSize = _Versions[_v].CreateResponse(requestData, responseData, ipstr)))
{
return 0;
}
if (Ctx != *Ndr64Ctx)
{
Response->Ndr.DataSizeMax = LE32(0x00020000);
Response->Ndr.DataLength = Response->Ndr.DataSizeIs = LE32(ResponseSize);
len = ResponseSize + sizeof(Response->Ndr);
}
else
{
Response->Ndr64.DataSizeMax = LE64(0x00020000ULL);
Response->Ndr64.DataLength = Response->Ndr64.DataSizeIs = LE64((uint64_t)ResponseSize);
len = ResponseSize + sizeof(Response->Ndr64);
}
pRpcReturnCode = ((BYTE*)&Response->Ndr) + len;
UA32(pRpcReturnCode) = 0; //LE32 not needed for 0
len += sizeof(DWORD);
// Pad zeros to 32-bit align (seems not neccassary but Windows RPC does it this way)
int pad = ((~len & 3) + 1) & 3;
memset(pRpcReturnCode + sizeof(DWORD), 0, pad);
len += pad;
Response->AllocHint = LE32(len);
Response->ContextId = Request->ContextId;
*((WORD*)&Response->CancelCount) = 0; // CancelCount + Pad1
return len + 8;
}
#if defined(_PEDANTIC) && !defined(NO_LOG)
static void CheckRpcBindRequest(const RPC_BIND_REQUEST *const Request, const unsigned int len)
{
uint_fast8_t i, HasTransferSyntaxNDR32 = FALSE;
char guidBuffer1[GUID_STRING_LENGTH + 1], guidBuffer2[GUID_STRING_LENGTH + 1];
uint32_t CapCtxItems = (len - sizeof(*Request) + sizeof(Request->CtxItems)) / sizeof(Request->CtxItems);
DWORD NumCtxItems = LE32(Request->NumCtxItems);
if (NumCtxItems < CapCtxItems) // Can't be too small because already handled by RpcBindSize
logger("Warning: Excess bytes in RPC bind request.\n");
for (i = 0; i < NumCtxItems; i++)
{
if (!IsEqualGUID(&Request->CtxItems[i].InterfaceUUID, InterfaceUuid))
{
uuid2StringLE((GUID*)&Request->CtxItems[i].InterfaceUUID, guidBuffer1);
uuid2StringLE((GUID*)InterfaceUuid, guidBuffer2);
logger("Warning: Interface UUID is %s but should be %s in Ctx item %u.\n", guidBuffer1, guidBuffer2, (unsigned int)i);
}
if (Request->CtxItems[i].NumTransItems != LE16(1))
logger("Fatal: %u NDR32 transfer items detected in Ctx item %u, but only one is supported.\n",
(unsigned int)LE16(Request->CtxItems[i].NumTransItems), (unsigned int)i
);
if (Request->CtxItems[i].InterfaceVerMajor != LE16(1) || Request->CtxItems[i].InterfaceVerMinor != 0)
logger("Warning: NDR32 Interface version is %u.%u but should be 1.0.\n",
(unsigned int)LE16(Request->CtxItems[i].InterfaceVerMajor),
(unsigned int)LE16(Request->CtxItems[i].InterfaceVerMinor)
);
if (Request->CtxItems[i].ContextId != LE16((WORD)i))
logger("Warning: context id of Ctx item %u is %u.\n", (unsigned int)i, (unsigned int)Request->CtxItems[i].ContextId);
if ( IsEqualGUID((GUID*)TransferSyntaxNDR32, &Request->CtxItems[i].TransferSyntax) )
{
HasTransferSyntaxNDR32 = TRUE;
if (Request->CtxItems[i].SyntaxVersion != LE32(2))
logger("NDR32 transfer syntax version is %u but should be 2.\n", LE32(Request->CtxItems[i].SyntaxVersion));
}
else if ( IsEqualGUID((GUID*)TransferSyntaxNDR64, &Request->CtxItems[i].TransferSyntax) )
{
if (Request->CtxItems[i].SyntaxVersion != LE32(1))
logger("NDR64 transfer syntax version is %u but should be 1.\n", LE32(Request->CtxItems[i].SyntaxVersion));
}
else if (!memcmp(BindTimeFeatureNegotiation, (BYTE*)(&Request->CtxItems[i].TransferSyntax), 8))
{
if (Request->CtxItems[i].SyntaxVersion != LE32(1))
logger("BTFN syntax version is %u but should be 1.\n", LE32(Request->CtxItems[i].SyntaxVersion));
}
}
if (!HasTransferSyntaxNDR32)
logger("Warning: RPC bind request has no NDR32 CtxItem.\n");
}
#endif // defined(_PEDANTIC) && !defined(NO_LOG)
/*
* Check, if we receive enough bytes to return a valid RPC bind response
*/
static unsigned int checkRpcBindSize(const RPC_BIND_REQUEST *const Request, const unsigned int RequestSize, WORD* NdrCtx, WORD* Ndr64Ctx)
{
if ( RequestSize < sizeof(RPC_BIND_REQUEST) ) return FALSE;
unsigned int _NumCtxItems = LE32(Request->NumCtxItems);
if ( RequestSize < sizeof(RPC_BIND_REQUEST) - sizeof(Request->CtxItems[0]) + _NumCtxItems * sizeof(Request->CtxItems[0]) ) return FALSE;
#if defined(_PEDANTIC) && !defined(NO_LOG)
CheckRpcBindRequest(Request, RequestSize);
#endif // defined(_PEDANTIC) && !defined(NO_LOG)
return TRUE;
}
/*
* Accepts a bind or alter context request from the client and composes the bind response.
* Needs the socket because the tcp port number is part of the response.
* len is not used here.
*
* Returns TRUE on success.
*/
static int rpcBind(const RPC_BIND_REQUEST *const Request, RPC_BIND_RESPONSE* Response, const DWORD RpcAssocGroup, const SOCKET sock, WORD* NdrCtx, WORD* Ndr64Ctx, BYTE packetType, const char* const ipstr_unused)
{
unsigned int i, _st = FALSE;
DWORD numCtxItems = LE32(Request->NumCtxItems);
int_fast8_t IsNDR64possible = FALSE;
uint_fast8_t portNumberSize;
socklen_t socklen;
struct sockaddr_storage addr;
// M$ RPC does not do this. Pad bytes contain apparently random data
// memset(Response->SecondaryAddress, 0, sizeof(Response->SecondaryAddress));
socklen = sizeof addr;
if (
packetType == RPC_PT_ALTERCONTEXT_REQ ||
getsockname(sock, (struct sockaddr*)&addr, &socklen) ||
getnameinfo((struct sockaddr*)&addr, socklen, NULL, 0, (char*)Response->SecondaryAddress, sizeof(Response->SecondaryAddress), NI_NUMERICSERV))
{
portNumberSize = Response->SecondaryAddressLength = 0;
}
else
{
portNumberSize = strlen((char*)Response->SecondaryAddress) + 1;
Response->SecondaryAddressLength = LE16(portNumberSize);
}
Response->MaxXmitFrag = Request->MaxXmitFrag;
Response->MaxRecvFrag = Request->MaxRecvFrag;
Response->AssocGroup = LE32(RpcAssocGroup);
// This is really ugly (but efficient) code to support padding after the secondary address field
if (portNumberSize < 3)
{
Response = (RPC_BIND_RESPONSE*)((BYTE*)Response - 4);
}
Response->NumResults = Request->NumCtxItems;
if (UseRpcNDR64)
{
for (i = 0; i < numCtxItems; i++)
{
if ( IsEqualGUID((GUID*)TransferSyntaxNDR32, &Request->CtxItems[i].TransferSyntax) )
{
/*if (packetType == RPC_PT_BIND_REQ)*/
*NdrCtx = LE16(Request->CtxItems[i].ContextId);
}
if ( IsEqualGUID((GUID*)TransferSyntaxNDR64, &Request->CtxItems[i].TransferSyntax) )
{
IsNDR64possible = TRUE;
/*if (packetType == RPC_PT_BIND_REQ)*/
*Ndr64Ctx = LE16(Request->CtxItems[i].ContextId);
}
}
}
for (i = 0; i < numCtxItems; i++)
{
memset(&Response->Results[i].TransferSyntax, 0, sizeof(GUID));
if ( !IsNDR64possible && IsEqualGUID((GUID*)TransferSyntaxNDR32, &Request->CtxItems[i].TransferSyntax) )
{
Response->Results[i].SyntaxVersion = LE32(2);
Response->Results[i].AckResult =
Response->Results[i].AckReason = RPC_BIND_ACCEPT;
memcpy(&Response->Results[i].TransferSyntax, TransferSyntaxNDR32, sizeof(GUID));
_st = TRUE;
}
else if ( IsNDR64possible && IsEqualGUID((GUID*)TransferSyntaxNDR64, &Request->CtxItems[i].TransferSyntax) )
{
Response->Results[i].SyntaxVersion = LE32(1);
Response->Results[i].AckResult =
Response->Results[i].AckReason = RPC_BIND_ACCEPT;
memcpy(&Response->Results[i].TransferSyntax, TransferSyntaxNDR64, sizeof(GUID));
_st = TRUE;
}
else if ( UseRpcBTFN && !memcmp(BindTimeFeatureNegotiation, (BYTE*)(&Request->CtxItems[i].TransferSyntax), 8) )
{
Response->Results[i].SyntaxVersion = 0;
Response->Results[i].AckResult = RPC_BIND_ACK;
// Features requested are actually encoded in the GUID
Response->Results[i].AckReason =
((WORD*)(&Request->CtxItems[i].TransferSyntax))[4] &
(RPC_BTFN_SEC_CONTEXT_MULTIPLEX | RPC_BTFN_KEEP_ORPHAN);
}
else
{
Response->Results[i].SyntaxVersion = 0;
Response->Results[i].AckResult =
Response->Results[i].AckReason = RPC_BIND_NACK; // Unsupported
}
}
if ( !_st ) return 0;
return sizeof(RPC_BIND_RESPONSE) + numCtxItems * sizeof(((RPC_BIND_RESPONSE *)0)->Results[0]) - (portNumberSize < 3 ? 4 : 0);
}
//
// Main RPC handling routine
//
typedef unsigned int (*GetResponseSize_t)(const void *const request, const unsigned int requestSize, WORD* NdrCtx, WORD* Ndr64Ctx);
typedef int (*GetResponse_t)(const void* const request, void* response, const DWORD rpcAssocGroup, const SOCKET socket, WORD* NdrCtx, WORD* Ndr64Ctx, BYTE packetType, const char* const ipstr);
static const struct {
BYTE ResponsePacketType;
GetResponseSize_t CheckRequestSize;
GetResponse_t GetResponse;
}
_Actions[] = {
{ RPC_PT_BIND_ACK, (GetResponseSize_t)checkRpcBindSize, (GetResponse_t) rpcBind },
{ RPC_PT_RESPONSE, (GetResponseSize_t)checkRpcRequestSize, (GetResponse_t) rpcRequest },
{ RPC_PT_ALTERCONTEXT_ACK, (GetResponseSize_t)checkRpcBindSize, (GetResponse_t) rpcBind },
};
/*
* This is the main RPC server loop. Returns after KMS request has been serviced
* or a timeout has occured.
*/
void rpcServer(const SOCKET sock, const DWORD RpcAssocGroup, const char* const ipstr)
{
RPC_HEADER rpcRequestHeader;
WORD NdrCtx = INVALID_NDR_CTX, Ndr64Ctx = INVALID_NDR_CTX;
randomNumberInit();
while (_recv(sock, &rpcRequestHeader, sizeof(rpcRequestHeader)))
{
//int_fast8_t _st;
unsigned int request_len, response_len;
uint_fast8_t _a;
#if defined(_PEDANTIC) && !defined(NO_LOG)
checkRpcHeader(&rpcRequestHeader, rpcRequestHeader.PacketType, &logger);
#endif // defined(_PEDANTIC) && !defined(NO_LOG)
switch (rpcRequestHeader.PacketType)
{
case RPC_PT_BIND_REQ: _a = 0; break;
case RPC_PT_REQUEST: _a = 1; break;
case RPC_PT_ALTERCONTEXT_REQ: _a = 2; break;
default: return;
}
request_len = LE16(rpcRequestHeader.FragLength) - sizeof(rpcRequestHeader);
BYTE requestBuffer[MAX_REQUEST_SIZE + sizeof(RPC_RESPONSE64)];
BYTE responseBuffer[MAX_RESPONSE_SIZE + sizeof(RPC_HEADER) + sizeof(RPC_RESPONSE64)];
RPC_HEADER *rpcResponseHeader = (RPC_HEADER *)responseBuffer;
RPC_RESPONSE* rpcResponse = (RPC_RESPONSE*)(responseBuffer + sizeof(rpcRequestHeader));
// The request is larger than the buffer size
if (request_len > MAX_REQUEST_SIZE + sizeof(RPC_REQUEST64)) return;
// Unable to receive the complete request
if (!_recv(sock, requestBuffer, request_len)) return;
// Request is invalid
if (!_Actions[_a].CheckRequestSize(requestBuffer, request_len, &NdrCtx, &Ndr64Ctx)) return;
// Unable to create a valid response from request
if (!(response_len = _Actions[_a].GetResponse(requestBuffer, rpcResponse, RpcAssocGroup, sock, &NdrCtx, &Ndr64Ctx, rpcRequestHeader.PacketType, ipstr))) return;
response_len += sizeof(RPC_HEADER);
memcpy(rpcResponseHeader, &rpcRequestHeader, sizeof(RPC_HEADER));
rpcResponseHeader->FragLength = LE16(response_len);
rpcResponseHeader->PacketType = _Actions[_a].ResponsePacketType;
if (rpcResponseHeader->PacketType == RPC_PT_ALTERCONTEXT_ACK)
rpcResponseHeader->PacketFlags = RPC_PF_FIRST | RPC_PF_LAST;
if (!_send(sock, responseBuffer, response_len)) return;
if (DisconnectImmediately && rpcResponseHeader->PacketType == RPC_PT_RESPONSE)
shutdown(sock, VLMCSD_SHUT_RDWR);
}
}
/* RPC client functions */
static DWORD CallId = 2; // M$ starts with CallId 2. So we do the same.
/*
* Checks RPC header. Returns 0 on success.
* This is mainly for debugging a non Microsoft KMS server that uses its own RPC code.
*/
static int checkRpcHeader(const RPC_HEADER *const Header, const BYTE desiredPacketType, const PRINTFUNC p)
{
int status = 0;
if (Header->PacketType != desiredPacketType)
{
p("Fatal: Received wrong RPC packet type. Expected %u but got %u\n",
(uint32_t)desiredPacketType,
Header->PacketType
);
status = !0;
}
if (Header->DataRepresentation != BE32(0x10000000))
{
p("Fatal: RPC response does not conform to Microsoft's limited support of DCE RPC\n");
status = !0;
}
if (Header->AuthLength != 0)
{
p("Fatal: RPC response requests authentication\n");
status = !0;
}
// vlmcsd does not support fragmented packets (not yet neccassary)
if ( (Header->PacketFlags & (RPC_PF_FIRST | RPC_PF_LAST)) != (RPC_PF_FIRST | RPC_PF_LAST) )
{
p("Fatal: RPC packet flags RPC_PF_FIRST and RPC_PF_LAST are not both set.\n");
status = !0;
}
if (Header->PacketFlags & RPC_PF_CANCEL_PENDING) p("Warning: %s should not be set\n", "RPC_PF_CANCEL_PENDING");
if (Header->PacketFlags & RPC_PF_RESERVED) p("Warning: %s should not be set\n", "RPC_PF_RESERVED");
if (Header->PacketFlags & RPC_PF_NOT_EXEC) p("Warning: %s should not be set\n", "RPC_PF_NOT_EXEC");
if (Header->PacketFlags & RPC_PF_MAYBE) p("Warning: %s should not be set\n", "RPC_PF_MAYBE");
if (Header->PacketFlags & RPC_PF_OBJECT) p("Warning: %s should not be set\n", "RPC_PF_OBJECT");
if (Header->VersionMajor != 5 || Header->VersionMinor != 0)
{
p("Fatal: Expected RPC version 5.0 and got %u.%u\n", Header->VersionMajor, Header->VersionMinor);
status = !0;
}
return status;
}
/*
* Checks an RPC response header. Does basic header checks by calling checkRpcHeader()
* and then does additional checks if response header complies with the respective request header.
* PRINTFUNC p can be anything that has the same prototype as printf.
* Returns 0 on success.
*/
static int checkRpcResponseHeader(const RPC_HEADER *const ResponseHeader, const RPC_HEADER *const RequestHeader, const BYTE desiredPacketType, const PRINTFUNC p)
{
static int_fast8_t WineBugDetected = FALSE;
int status = checkRpcHeader(ResponseHeader, desiredPacketType, p);
if (desiredPacketType == RPC_PT_BIND_ACK)
{
if ((ResponseHeader->PacketFlags & RPC_PF_MULTIPLEX) != (RequestHeader->PacketFlags & RPC_PF_MULTIPLEX))
{
p("Warning: RPC_PF_MULTIPLEX of RPC request and response should match\n");
}
}
else
{
if (ResponseHeader->PacketFlags & RPC_PF_MULTIPLEX)
{
p("Warning: %s should not be set\n", "RPC_PF_MULTIPLEX");
}
}
if (!status && ResponseHeader->CallId == LE32(1))
{
if (!WineBugDetected)
{
p("Warning: Buggy RPC of Wine detected. Call Id of Response is always 1\n");
WineBugDetected = TRUE;
}
}
else if (ResponseHeader->CallId != RequestHeader->CallId)
{
p("Fatal: Sent Call Id %u but received answer for Call Id %u\n",
(uint32_t)LE32(RequestHeader->CallId),
(uint32_t)LE32(ResponseHeader->CallId)
);
status = !0;
}
return status;
}
/*
* Initializes an RPC request header as needed for KMS, i.e. packet always fits in one fragment.
* size cannot be greater than fragment length negotiated during RPC bind.
*/
static void createRpcRequestHeader(RPC_HEADER* RequestHeader, BYTE packetType, WORD size)
{
RequestHeader->PacketType = packetType;
RequestHeader->PacketFlags = RPC_PF_FIRST | RPC_PF_LAST;
RequestHeader->VersionMajor = 5;
RequestHeader->VersionMinor = 0;
RequestHeader->AuthLength = 0;
RequestHeader->DataRepresentation = BE32(0x10000000); // Little endian, ASCII charset, IEEE floating point
RequestHeader->CallId = LE32(CallId);
RequestHeader->FragLength = LE16(size);
}
/*
* Sends a KMS request via RPC and receives a response.
* Parameters are raw (encrypted) reqeuests / responses.
* Returns 0 on success.
*/
RpcStatus rpcSendRequest(const RpcCtx sock, const BYTE *const KmsRequest, const size_t requestSize, BYTE **KmsResponse, size_t *const responseSize)
{
#define MAX_EXCESS_BYTES 16
RPC_HEADER *RequestHeader, ResponseHeader;
RPC_REQUEST64 *RpcRequest;
RPC_RESPONSE64 _Response;
int status = 0;
int_fast8_t useNdr64 = UseRpcNDR64 && firstPacketSent;
size_t size = sizeof(RPC_HEADER) + (useNdr64 ? sizeof(RPC_REQUEST64) : sizeof(RPC_REQUEST)) + requestSize;
size_t responseSize2;
*KmsResponse = NULL;
BYTE *_Request = (BYTE*)vlmcsd_malloc(size);
RequestHeader = (RPC_HEADER*)_Request;
RpcRequest = (RPC_REQUEST64*)(_Request + sizeof(RPC_HEADER));
createRpcRequestHeader(RequestHeader, RPC_PT_REQUEST, size);
// Increment CallId for next Request
CallId++;
RpcRequest->Opnum = 0;
if (useNdr64)
{
RpcRequest->ContextId = LE16(1); // We negotiate NDR64 always as context 1
RpcRequest->AllocHint = LE32(requestSize + sizeof(RpcRequest->Ndr64));
RpcRequest->Ndr64.DataLength = LE64((uint64_t)requestSize);
RpcRequest->Ndr64.DataSizeIs = LE64((uint64_t)requestSize);
memcpy(RpcRequest->Ndr64.Data, KmsRequest, requestSize);
}
else
{
RpcRequest->ContextId = 0; // We negotiate NDR32 always as context 0
RpcRequest->AllocHint = LE32(requestSize + sizeof(RpcRequest->Ndr));
RpcRequest->Ndr.DataLength = LE32(requestSize);
RpcRequest->Ndr.DataSizeIs = LE32(requestSize);
memcpy(RpcRequest->Ndr.Data, KmsRequest, requestSize);
}
for(;;)
{
int bytesread;
if (!_send(sock, _Request, size))
{
errorout("\nFatal: Could not send RPC request\n");
status = !0;
break;
}
if (!_recv(sock, &ResponseHeader, sizeof(RPC_HEADER)))
{
errorout("\nFatal: No RPC response received from server\n");
status = !0;
break;
}
if ((status = checkRpcResponseHeader(&ResponseHeader, RequestHeader, RPC_PT_RESPONSE, &errorout))) break;
size = useNdr64 ? sizeof(RPC_RESPONSE64) : sizeof(RPC_RESPONSE);
if (size > LE16(ResponseHeader.FragLength) - sizeof(ResponseHeader))
size = LE16(ResponseHeader.FragLength) - sizeof(ResponseHeader);
if (!_recv(sock, &_Response, size))
{
errorout("\nFatal: RPC response is incomplete\n");
status = !0;
break;
}
if (_Response.CancelCount != 0)
{
errorout("\nFatal: RPC response cancel count is not 0\n");
status = !0;
}
if (_Response.ContextId != (useNdr64 ? LE16(1) : 0))
{
errorout("\nFatal: RPC response context id %u is not bound\n", (unsigned int)LE16(_Response.ContextId));
status = !0;
}
int_fast8_t sizesMatch;
if (useNdr64)
{
*responseSize = (size_t)LE64(_Response.Ndr64.DataLength);
responseSize2 = (size_t)LE64(_Response.Ndr64.DataSizeIs);
if (!*responseSize || !_Response.Ndr64.DataSizeMax)
{
status = (int)LE32(_Response.Ndr64.status);
break;
}
sizesMatch = (size_t)LE64(_Response.Ndr64.DataLength) == responseSize2;
}
else
{
*responseSize = (size_t)LE32(_Response.Ndr.DataLength);
responseSize2 = (size_t)LE32(_Response.Ndr.DataSizeIs);
if (!*responseSize || !_Response.Ndr.DataSizeMax)
{
status = (int)LE32(_Response.Ndr.status);
break;
}
sizesMatch = (size_t)LE32(_Response.Ndr.DataLength) == responseSize2;
}
if (!sizesMatch)
{
errorout("\nFatal: NDR data length (%u) does not match NDR data size (%u)\n",
(uint32_t)*responseSize,
(uint32_t)LE32(_Response.Ndr.DataSizeIs)
);
status = !0;
}
*KmsResponse = (BYTE*)vlmcsd_malloc(*responseSize + MAX_EXCESS_BYTES);
// If RPC stub is too short, assume missing bytes are zero (same ill behavior as MS RPC)
memset(*KmsResponse, 0, *responseSize + MAX_EXCESS_BYTES);
// Read up to 16 bytes more than bytes expected to detect faulty KMS emulators
if ((bytesread = recv(sock, (char*)*KmsResponse, *responseSize + MAX_EXCESS_BYTES, 0)) < (int)*responseSize)
{
errorout("\nFatal: No or incomplete KMS response received. Required %u bytes but only got %i\n",
(uint32_t)*responseSize,
(int32_t)(bytesread < 0 ? 0 : bytesread)
);
status = !0;
break;
}
DWORD *pReturnCode;
size_t len = *responseSize + (useNdr64 ? sizeof(_Response.Ndr64) : sizeof(_Response.Ndr)) + sizeof(*pReturnCode);
size_t pad = ((~len & 3) + 1) & 3;
if (len + pad != LE32(_Response.AllocHint))
{
errorout("\nWarning: RPC stub size is %u, should be %u (probably incorrect padding)\n", (uint32_t)LE32(_Response.AllocHint), (uint32_t)(len + pad));
}
else
{
size_t i;
for (i = 0; i < pad; i++)
{
if (*(*KmsResponse + *responseSize + sizeof(*pReturnCode) + i))
{
errorout("\nWarning: RPC stub data not padded to zeros according to Microsoft standard\n");
break;
}
}
}
pReturnCode = (DWORD*)(*KmsResponse + *responseSize + pad);
status = LE32(UA32(pReturnCode));
if (status) errorout("\nWarning: RPC stub data reported Error %u\n", (uint32_t)status);
break;
}
free(_Request);
firstPacketSent = TRUE;
return status;
#undef MAX_EXCESS_BYTES
}
static int_fast8_t IsNullGuid(BYTE* guidPtr)
{
int_fast8_t i;
for (i = 0; i < 16; i++)
{
if (guidPtr[i]) return FALSE;
}
return TRUE;
}
/*
* Perform RPC client bind. Accepts a connected client socket.
* Returns 0 on success. RPC binding is required before any payload can be
* exchanged. It negotiates about protocol details.
*/
RpcStatus rpcBindOrAlterClientContext(const RpcCtx sock, BYTE packetType, const int_fast8_t verbose)
{
RPC_HEADER *RequestHeader, ResponseHeader;
RPC_BIND_REQUEST *bindRequest;
RPC_BIND_RESPONSE *bindResponse;
int status;
WORD ctxItems = 1 + (packetType == RPC_PT_BIND_REQ ? UseRpcNDR64 + UseRpcBTFN : 0);
size_t rpcBindSize = (sizeof(RPC_HEADER) + sizeof(RPC_BIND_REQUEST) + (ctxItems - 1) * sizeof(bindRequest->CtxItems[0]));
WORD ctxIndex = 0;
WORD i;
WORD CtxBTFN = (WORD)~0, CtxNDR64 = (WORD)~0;
BYTE _Request[rpcBindSize];
RequestHeader = (RPC_HEADER*)_Request;
bindRequest = (RPC_BIND_REQUEST* )(_Request + sizeof(RPC_HEADER));
createRpcRequestHeader(RequestHeader, packetType, rpcBindSize);
RequestHeader->PacketFlags |= UseMultiplexedRpc ? RPC_PF_MULTIPLEX : 0;
bindRequest->AssocGroup = 0;
bindRequest->MaxRecvFrag = bindRequest->MaxXmitFrag = LE16(5840);
bindRequest->NumCtxItems = LE32(ctxItems);
// data that is identical in all Ctx items
for (i = 0; i < ctxItems; i++)
{
bindRequest->CtxItems[i].ContextId = LE16(i);
bindRequest->CtxItems[i].InterfaceVerMajor = LE16(1);
bindRequest->CtxItems[i].InterfaceVerMinor = 0;
bindRequest->CtxItems[i].NumTransItems = LE16(1);
bindRequest->CtxItems[i].SyntaxVersion = i ? LE32(1) : LE32(2);
memcpy(&bindRequest->CtxItems[i].InterfaceUUID, InterfaceUuid, sizeof(GUID));
}
memcpy(&bindRequest->CtxItems[0].TransferSyntax, TransferSyntaxNDR32, sizeof(GUID));
if (UseRpcNDR64 && packetType == RPC_PT_BIND_REQ)
{
memcpy(&bindRequest->CtxItems[++ctxIndex].TransferSyntax, TransferSyntaxNDR64, sizeof(GUID));
CtxNDR64 = ctxIndex;
}
if (UseRpcBTFN && packetType == RPC_PT_BIND_REQ)
{
memcpy(&bindRequest->CtxItems[++ctxIndex].TransferSyntax, BindTimeFeatureNegotiation, sizeof(GUID));
CtxBTFN = ctxIndex;
}
if (!_send(sock, _Request, rpcBindSize))
{
errorout("\nFatal: Sending RPC bind request failed\n");
return !0;
}
if (!_recv(sock, &ResponseHeader, sizeof(RPC_HEADER)))
{
errorout("\nFatal: Did not receive a response from server\n");
return !0;
}
if ((status = checkRpcResponseHeader
(
&ResponseHeader,
RequestHeader,
packetType == RPC_PT_BIND_REQ ? RPC_PT_BIND_ACK : RPC_PT_ALTERCONTEXT_ACK,
&errorout
)))
{
return status;
}
bindResponse = (RPC_BIND_RESPONSE*)vlmcsd_malloc(LE16(ResponseHeader.FragLength) - sizeof(RPC_HEADER));
BYTE* bindResponseBytePtr = (BYTE*)bindResponse;
if (!_recv(sock, bindResponse, LE16(ResponseHeader.FragLength) - sizeof(RPC_HEADER)))
{
errorout("\nFatal: Incomplete RPC bind acknowledgement received\n");
free(bindResponseBytePtr);
return !0;
}
else
{
/*
* checking, whether a bind or alter context response is as expected.
* This check is very strict and checks whether a KMS emulator behaves exactly the same way
* as Microsoft's RPC does.
*/
status = 0;
if (bindResponse->SecondaryAddressLength < LE16(3))
bindResponse = (RPC_BIND_RESPONSE*)(bindResponseBytePtr - 4);
if (bindResponse->NumResults != bindRequest->NumCtxItems)
{
errorout("\nFatal: Expected %u CTX items but got %u\n",
(uint32_t)LE32(bindRequest->NumCtxItems),
(uint32_t)LE32(bindResponse->NumResults)
);
status = !0;
}
for (i = 0; i < ctxItems; i++)
{
const char* transferSyntaxName =
i == CtxBTFN ? "BTFN" : i == CtxNDR64 ? "NDR64" : "NDR32";
if (bindResponse->Results[i].AckResult == RPC_BIND_NACK) // transfer syntax was declined
{
if (!IsNullGuid((BYTE*)&bindResponse->Results[i].TransferSyntax))
{
errorout(
"\nWarning: Rejected transfer syntax %s did not return NULL Guid\n",
transferSyntaxName
);
}
if (bindResponse->Results[i].SyntaxVersion)
{
errorout(
"\nWarning: Rejected transfer syntax %s did not return syntax version 0 but %u\n",
transferSyntaxName,
LE32(bindResponse->Results[i].SyntaxVersion)
);
}
if (bindResponse->Results[i].AckReason == RPC_ABSTRACTSYNTAX_UNSUPPORTED)
{
errorout(
"\nWarning: Transfer syntax %s does not support KMS activation\n",
transferSyntaxName
);
}
else if (bindResponse->Results[i].AckReason != RPC_SYNTAX_UNSUPPORTED)
{
errorout(
"\nWarning: Rejected transfer syntax %s did not return ack reason RPC_SYNTAX_UNSUPPORTED\n",
transferSyntaxName
);
}
continue;
}
if (i == CtxBTFN) // BTFN
{
if (bindResponse->Results[i].AckResult != RPC_BIND_ACK)
{
errorout("\nWarning: BTFN did not respond with RPC_BIND_ACK or RPC_BIND_NACK\n");
}
if (bindResponse->Results[i].AckReason != LE16(3))
{
errorout("\nWarning: BTFN did not return expected feature mask 0x3 but 0x%X\n", (unsigned int)LE16(bindResponse->Results[i].AckReason));
}
if (verbose) printf("... BTFN ");
RpcFlags.HasBTFN = TRUE;
continue;
}
// NDR32 or NDR64 Ctx
if (bindResponse->Results[i].AckResult != RPC_BIND_ACCEPT)
{
errorout(
"\nFatal: transfer syntax %s returned an invalid status, neither RPC_BIND_ACCEPT nor RPC_BIND_NACK\n",
transferSyntaxName
);
status = !0;
}
if (!IsEqualGUID(&bindResponse->Results[i].TransferSyntax, &bindRequest->CtxItems[i].TransferSyntax))
{
errorout(
"\nFatal: Transfer syntax of RPC bind request and response does not match\n"
);
status = !0;
}
if (bindResponse->Results[i].SyntaxVersion != bindRequest->CtxItems[i].SyntaxVersion)
{
errorout("\nFatal: Expected transfer syntax version %u for %s but got %u\n",
(uint32_t)LE32(bindRequest->CtxItems[0].SyntaxVersion),
transferSyntaxName,
(uint32_t)LE32(bindResponse->Results[0].SyntaxVersion)
);
status = !0;
}
// The ack reason field is actually undefined here but Microsoft sets this to 0
if (bindResponse->Results[i].AckReason != 0)
{
errorout(
"\nWarning: Ack reason should be 0 but is %u\n",
LE16(bindResponse->Results[i].AckReason)
);
}
if (!status)
{
if (i == CtxNDR64)
{
RpcFlags.HasNDR64 = TRUE;
if (verbose) printf("... NDR64 ");
}
if (!i)
{
RpcFlags.HasNDR32 = TRUE;
if (verbose) printf("... NDR32 ");
}
}
}
}
free(bindResponseBytePtr);
if (!RpcFlags.HasNDR64 && !RpcFlags.HasNDR32)
{
errorout("\nFatal: Could neither negotiate NDR32 nor NDR64 with the RPC server\n");
status = !0;
}
return status;
}
RpcStatus rpcBindClient(const RpcCtx sock, const int_fast8_t verbose)
{
firstPacketSent = FALSE;
RpcFlags.mask = 0;
RpcStatus status =
rpcBindOrAlterClientContext(sock, RPC_PT_BIND_REQ, verbose);
if (status) return status;
if (!RpcFlags.HasNDR32)
status = rpcBindOrAlterClientContext(sock, RPC_PT_ALTERCONTEXT_REQ, verbose);
return status;
}
#endif // USE_MSRPC