You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
astro/basic/mars.go

457 lines
11 KiB
Go

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

package basic
import (
"math"
"b612.me/astro/planet"
. "b612.me/astro/tools"
)
func MarsL(JD float64) float64 {
return planet.WherePlanet(3, 0, JD)
}
func MarsB(JD float64) float64 {
return planet.WherePlanet(3, 1, JD)
}
func MarsR(JD float64) float64 {
return planet.WherePlanet(3, 2, JD)
}
func AMarsX(JD float64) float64 {
l := MarsL(JD)
b := MarsB(JD)
r := MarsR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
return x
}
func AMarsY(JD float64) float64 {
l := MarsL(JD)
b := MarsB(JD)
r := MarsR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
return y
}
func AMarsZ(JD float64) float64 {
//l := MarsL(JD)
b := MarsB(JD)
r := MarsR(JD)
// el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
z := r*Sin(b) - er*Sin(eb)
return z
}
func AMarsXYZ(JD float64) (float64, float64, float64) {
l := MarsL(JD)
b := MarsB(JD)
r := MarsR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
z := r*Sin(b) - er*Sin(eb)
return x, y, z
}
func MarsApparentRa(JD float64) float64 {
lo, bo := MarsApparentLoBo(JD)
sita := Sita(JD)
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
ra = ra * 180 / math.Pi
return Limit360(ra)
}
func MarsApparentDec(JD float64) float64 {
lo, bo := MarsApparentLoBo(JD)
sita := Sita(JD)
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return dec
}
func MarsApparentRaDec(JD float64) (float64, float64) {
lo, bo := MarsApparentLoBo(JD)
sita := Sita(JD)
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
ra = ra * 180 / math.Pi
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return Limit360(ra), dec
}
func EarthMarsAway(JD float64) float64 {
x, y, z := AMarsXYZ(JD)
to := math.Sqrt(x*x + y*y + z*z)
return to
}
func MarsApparentLo(JD float64) float64 {
x, y, z := AMarsXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMarsXYZ(JD - to)
lo := math.Atan2(y, x)
//bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180.0 / math.Pi
//bo = bo * 180 / math.Pi
lo = Limit360(lo) + HJZD(JD)
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
return lo
}
func MarsApparentBo(JD float64) float64 {
x, y, z := AMarsXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMarsXYZ(JD - to)
//lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
//lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
//lo+=GXCLo(lo,bo,JD);
//bo+=GXCBo(lo,bo,JD)/3600;
//lo+=HJZD(JD);
return bo
}
func MarsApparentLoBo(JD float64) (float64, float64) {
x, y, z := AMarsXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMarsXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
//lo -= GXCLo(lo, bo, JD) / 3600
//bo += GXCBo(lo, bo, JD)
lo += HJZD(JD)
return lo, bo
}
func MarsTrueLoBo(JD float64) (float64, float64) {
x, y, z := AMarsXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMarsXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
return lo, bo
}
func MarsTrueLo(JD float64) float64 {
x, y, _ := AMarsXYZ(JD)
lo := math.Atan2(y, x)
lo = lo * 180 / math.Pi
lo = Limit360(lo)
return lo
}
func MarsMag(JD float64) float64 {
AwaySun := MarsR(JD)
AwayEarth := EarthMarsAway(JD)
Away := planet.WherePlanet(-1, 2, JD)
i := (AwaySun*AwaySun + AwayEarth*AwayEarth - Away*Away) / (2 * AwaySun * AwayEarth)
i = ArcCos(i)
Mag := -1.52 + 5*math.Log10(AwaySun*AwayEarth) + 0.016*i
return FloatRound(Mag, 2)
}
func MarsHeight(jde, lon, lat, timezone float64) float64 {
// 转换为世界时
utcJde := jde - timezone/24.0
// 计算视恒星时
ra, dec := MarsApparentRaDec(TD2UT(utcJde, true))
st := Limit360(ApparentSiderealTime(utcJde)*15 + lon)
// 计算时角
H := Limit360(st - ra)
// 高度角、时角与天球座标三角转换公式
// sin(h)=sin(lat)*sin(dec)+cos(dec)*cos(lat)*cos(H)
sinHeight := Sin(lat)*Sin(dec) + Cos(dec)*Cos(lat)*Cos(H)
return ArcSin(sinHeight)
}
func MarsAzimuth(jde, lon, lat, timezone float64) float64 {
// 转换为世界时
utcJde := jde - timezone/24.0
// 计算视恒星时
ra, dec := MarsApparentRaDec(TD2UT(utcJde, true))
st := Limit360(ApparentSiderealTime(utcJde)*15 + lon)
// 计算时角
H := Limit360(st - ra)
// 三角转换公式
tanAzimuth := Sin(H) / (Cos(H)*Sin(lat) - Tan(dec)*Cos(lat))
Azimuth := ArcTan(tanAzimuth)
if Azimuth < 0 {
if H/15 < 12 {
return Azimuth + 360
}
return Azimuth + 180
}
if H/15 < 12 {
return Azimuth + 180
}
return Azimuth
}
func MarsHourAngle(JD, Lon, TZ float64) float64 {
startime := Limit360(ApparentSiderealTime(JD-TZ/24)*15 + Lon)
timeangle := startime - MarsApparentRa(TD2UT(JD-TZ/24.0, true))
if timeangle < 0 {
timeangle += 360
}
return timeangle
}
func MarsCulminationTime(jde, lon, timezone float64) float64 {
//jde 世界时,非力学时,当地时区 0时无需转换力学时
//ra,dec 瞬时天球座标非J2000等时间天球坐标
jde = math.Floor(jde) + 0.5
JD1 := jde + Limit360(360-MarsHourAngle(jde, lon, timezone))/15.0/24.0*0.99726851851851851851
limitHA := func(jde, lon, timezone float64) float64 {
ha := MarsHourAngle(jde, lon, timezone)
if ha < 180 {
ha += 360
}
return ha
}
for {
JD0 := JD1
stDegree := limitHA(JD0, lon, timezone) - 360
stDegreep := (limitHA(JD0+0.000005, lon, timezone) - limitHA(JD0-0.000005, lon, timezone)) / 0.00001
JD1 = JD0 - stDegree/stDegreep
if math.Abs(JD1-JD0) <= 0.00001 {
break
}
}
return JD1
}
func MarsRiseTime(JD, Lon, Lat, TZ, ZS, HEI float64) float64 {
return marsRiseDown(JD, Lon, Lat, TZ, ZS, HEI, true)
}
func MarsDownTime(JD, Lon, Lat, TZ, ZS, HEI float64) float64 {
return marsRiseDown(JD, Lon, Lat, TZ, ZS, HEI, false)
}
func marsRiseDown(JD, Lon, Lat, TZ, ZS, HEI float64, isRise bool) float64 {
var An float64
JD = math.Floor(JD) + 0.5
ntz := math.Round(Lon / 15)
if ZS != 0 {
An = -0.8333
}
An = An - HeightDegreeByLat(HEI, Lat)
tztime := MarsCulminationTime(JD, Lon, ntz)
if MarsHeight(tztime, Lon, Lat, ntz) < An {
return -2 //极夜
}
if MarsHeight(tztime-0.5, Lon, Lat, ntz) > An {
return -1 //极昼
}
dec := HSunApparentDec(TD2UT(tztime-ntz/24, true))
//(sin(ho)-sin(φ)*sin(δ2))/(cos(φ)*cos(δ2))
tmp := (Sin(An) - Sin(dec)*Sin(Lat)) / (Cos(dec) * Cos(Lat))
var rise float64
if math.Abs(tmp) <= 1 {
rzsc := ArcCos(tmp) / 15
if isRise {
rise = tztime - rzsc/24 - 25.0/24.0/60.0
} else {
rise = tztime + rzsc/24 - 25.0/24.0/60.0
}
} else {
rise = tztime
i := 0
//TODO:使用二分法计算
for MarsHeight(rise, Lon, Lat, ntz) > An {
i++
if isRise {
rise -= 15.0 / 60.0 / 24.0
} else {
rise += 15.0 / 60.0 / 24.0
}
if i > 48 {
break
}
}
}
JD1 := rise
for {
JD0 := JD1
stDegree := MarsHeight(JD0, Lon, Lat, ntz) - An
stDegreep := (MarsHeight(JD0+0.000005, Lon, Lat, ntz) - MarsHeight(JD0-0.000005, Lon, Lat, ntz)) / 0.00001
JD1 = JD0 - stDegree/stDegreep
if math.Abs(JD1-JD0) <= 0.00001 {
break
}
}
return JD1 - ntz/24 + TZ/24
}
// Pos
const MARS_S_PERIOD = 1 / ((1 / 365.256363004) - (1 / 686.98))
func marsConjunction(jde, degree float64, next uint8) float64 {
//0=last 1=next
decSub := func(jde float64, degree float64, filter bool) float64 {
sub := Limit360(Limit360(MarsApparentLo(jde)-HSunApparentLo(jde)) - degree)
if filter {
if sub > 180 {
sub -= 360
}
if sub < -180 {
sub += 360
}
}
return sub
}
dayCost := MARS_S_PERIOD / 360
nowSub := decSub(jde, degree, false)
if next == 0 {
jde -= (360 - nowSub) * dayCost
} else {
jde += dayCost * nowSub
}
JD1 := jde
for {
JD0 := JD1
stDegree := decSub(JD0, degree, true)
stDegreep := (decSub(JD0+0.000005, degree, true) - decSub(JD0-0.000005, degree, true)) / 0.00001
JD1 = JD0 - stDegree/stDegreep
if math.Abs(JD1-JD0) <= 0.00001 {
break
}
}
return TD2UT(JD1, false)
}
func LastMarsConjunction(jde float64) float64 {
return marsConjunction(jde, 0, 0)
}
func NextMarsConjunction(jde float64) float64 {
return marsConjunction(jde, 0, 1)
}
func LastMarsOpposition(jde float64) float64 {
return marsConjunction(jde, 180, 0)
}
func NextMarsOpposition(jde float64) float64 {
return marsConjunction(jde, 180, 1)
}
func NextMarsEasternQuadrature(jde float64) float64 {
return marsConjunction(jde, 90, 1)
}
func LastMarsEasternQuadrature(jde float64) float64 {
return marsConjunction(jde, 90, 0)
}
func NextMarsWesternQuadrature(jde float64) float64 {
return marsConjunction(jde, 270, 1)
}
func LastMarsWesternQuadrature(jde float64) float64 {
return marsConjunction(jde, 270, 0)
}
func marsRetrograde(jde float64, isLeft bool) float64 {
//0=last 1=next
decSub := func(jde float64, val float64) float64 {
sub := MarsApparentRa(jde+val) - MarsApparentRa(jde-val)
if sub > 180 {
sub -= 360
}
if sub < -180 {
sub += 360
}
return sub / (2 * val)
}
jde = NextMarsOpposition(jde)
if isLeft {
jde -= 60
} else {
jde += 60
}
for {
nowSub := decSub(jde, 1.0/86400.0)
if math.Abs(nowSub) > 0.55 {
jde += 2
continue
}
break
}
JD1 := jde
for {
JD0 := JD1
stDegree := decSub(JD0, 2.0/86400.0)
stDegreep := (decSub(JD0+15.0/86400.0, 2.0/86400.0) - decSub(JD0-15.0/86400.0, 2.0/86400.0)) / (30.0 / 86400.0)
JD1 = JD0 - stDegree/stDegreep
if math.Abs(JD1-JD0) <= 30.0/86400.0 {
break
}
}
JD1 = JD1 - 15.0/86400.0
min := JD1
minRa := 100.0
for i := 0.0; i < 60.0; i++ {
tmp := decSub(JD1+i*0.5/86400.0, 0.5/86400.0)
if math.Abs(tmp) < math.Abs(minRa) {
minRa = tmp
min = JD1 + i*0.5/86400.0
}
}
return TD2UT(min, false)
}
func NextMarsRetrogradeToPrograde(jde float64) float64 {
date := marsRetrograde(jde, false)
if date < jde {
op := NextMarsOpposition(jde)
return marsRetrograde(op+10, false)
}
return date
}
func LastMarsRetrogradeToPrograde(jde float64) float64 {
jde = LastMarsOpposition(jde) - 10
date := marsRetrograde(jde, false)
if date > jde {
op := LastMarsOpposition(jde)
return marsRetrograde(op-10, false)
}
return date
}
func NextMarsProgradeToRetrograde(jde float64) float64 {
date := marsRetrograde(jde, true)
if date < jde {
op := NextMarsOpposition(jde)
return marsRetrograde(op+10, true)
}
return date
}
func LastMarsProgradeToRetrograde(jde float64) float64 {
jde = LastMarsOpposition(jde) - 10
date := marsRetrograde(jde, true)
if date > jde {
op := LastMarsOpposition(jde)
return marsRetrograde(op-10, true)
}
return date
}