438 lines
11 KiB
Go
438 lines
11 KiB
Go
package basic
|
||
|
||
import (
|
||
"math"
|
||
|
||
"b612.me/astro/planet"
|
||
. "b612.me/astro/tools"
|
||
)
|
||
|
||
func JupiterL(JD float64) float64 {
|
||
return planet.WherePlanet(4, 0, JD)
|
||
}
|
||
|
||
func JupiterB(JD float64) float64 {
|
||
return planet.WherePlanet(4, 1, JD)
|
||
}
|
||
func JupiterR(JD float64) float64 {
|
||
return planet.WherePlanet(4, 2, JD)
|
||
}
|
||
func AJupiterX(JD float64) float64 {
|
||
l := JupiterL(JD)
|
||
b := JupiterB(JD)
|
||
r := JupiterR(JD)
|
||
el := planet.WherePlanet(-1, 0, JD)
|
||
eb := planet.WherePlanet(-1, 1, JD)
|
||
er := planet.WherePlanet(-1, 2, JD)
|
||
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
|
||
return x
|
||
}
|
||
|
||
func AJupiterY(JD float64) float64 {
|
||
|
||
l := JupiterL(JD)
|
||
b := JupiterB(JD)
|
||
r := JupiterR(JD)
|
||
el := planet.WherePlanet(-1, 0, JD)
|
||
eb := planet.WherePlanet(-1, 1, JD)
|
||
er := planet.WherePlanet(-1, 2, JD)
|
||
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
|
||
return y
|
||
}
|
||
func AJupiterZ(JD float64) float64 {
|
||
//l := JupiterL(JD)
|
||
b := JupiterB(JD)
|
||
r := JupiterR(JD)
|
||
// el := planet.WherePlanet(-1, 0, JD)
|
||
eb := planet.WherePlanet(-1, 1, JD)
|
||
er := planet.WherePlanet(-1, 2, JD)
|
||
z := r*Sin(b) - er*Sin(eb)
|
||
return z
|
||
}
|
||
|
||
func AJupiterXYZ(JD float64) (float64, float64, float64) {
|
||
l := JupiterL(JD)
|
||
b := JupiterB(JD)
|
||
r := JupiterR(JD)
|
||
el := planet.WherePlanet(-1, 0, JD)
|
||
eb := planet.WherePlanet(-1, 1, JD)
|
||
er := planet.WherePlanet(-1, 2, JD)
|
||
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
|
||
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
|
||
z := r*Sin(b) - er*Sin(eb)
|
||
return x, y, z
|
||
}
|
||
|
||
func JupiterApparentRa(JD float64) float64 {
|
||
lo, bo := JupiterApparentLoBo(JD)
|
||
sita := Sita(JD)
|
||
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
|
||
ra = ra * 180 / math.Pi
|
||
return Limit360(ra)
|
||
}
|
||
func JupiterApparentDec(JD float64) float64 {
|
||
lo, bo := JupiterApparentLoBo(JD)
|
||
sita := Sita(JD)
|
||
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
|
||
return dec
|
||
}
|
||
|
||
func JupiterApparentRaDec(JD float64) (float64, float64) {
|
||
lo, bo := JupiterApparentLoBo(JD)
|
||
sita := Sita(JD)
|
||
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
|
||
ra = ra * 180 / math.Pi
|
||
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
|
||
return Limit360(ra), dec
|
||
}
|
||
|
||
func EarthJupiterAway(JD float64) float64 {
|
||
x, y, z := AJupiterXYZ(JD)
|
||
to := math.Sqrt(x*x + y*y + z*z)
|
||
return to
|
||
}
|
||
|
||
func JupiterApparentLo(JD float64) float64 {
|
||
x, y, z := AJupiterXYZ(JD)
|
||
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
|
||
x, y, z = AJupiterXYZ(JD - to)
|
||
lo := math.Atan2(y, x)
|
||
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
|
||
lo = lo * 180 / math.Pi
|
||
bo = bo * 180 / math.Pi
|
||
lo = Limit360(lo)
|
||
//lo-=GXCLo(lo,bo,JD)/3600;
|
||
//bo+=GXCBo(lo,bo,JD);
|
||
lo += HJZD(JD)
|
||
return lo
|
||
}
|
||
|
||
func JupiterApparentBo(JD float64) float64 {
|
||
x, y, z := AJupiterXYZ(JD)
|
||
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
|
||
x, y, z = AJupiterXYZ(JD - to)
|
||
//lo := math.Atan2(y, x)
|
||
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
|
||
//lo = lo * 180 / math.Pi
|
||
bo = bo * 180 / math.Pi
|
||
//lo+=GXCLo(lo,bo,JD);
|
||
//bo+=GXCBo(lo,bo,JD)/3600;
|
||
//lo+=HJZD(JD);
|
||
return bo
|
||
}
|
||
|
||
func JupiterApparentLoBo(JD float64) (float64, float64) {
|
||
x, y, z := AJupiterXYZ(JD)
|
||
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
|
||
x, y, z = AJupiterXYZ(JD - to)
|
||
lo := math.Atan2(y, x)
|
||
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
|
||
lo = lo * 180 / math.Pi
|
||
bo = bo * 180 / math.Pi
|
||
lo = Limit360(lo)
|
||
//lo-=GXCLo(lo,bo,JD)/3600;
|
||
//bo+=GXCBo(lo,bo,JD);
|
||
lo += HJZD(JD)
|
||
return lo, bo
|
||
}
|
||
|
||
func JupiterMag(JD float64) float64 {
|
||
AwaySun := JupiterR(JD)
|
||
AwayEarth := EarthJupiterAway(JD)
|
||
Away := planet.WherePlanet(-1, 2, JD)
|
||
i := (AwaySun*AwaySun + AwayEarth*AwayEarth - Away*Away) / (2 * AwaySun * AwayEarth)
|
||
i = ArcCos(i)
|
||
Mag := -9.40 + 5*math.Log10(AwaySun*AwayEarth) + 0.0005*i
|
||
return FloatRound(Mag, 2)
|
||
}
|
||
|
||
func JupiterHeight(jde, lon, lat, timezone float64) float64 {
|
||
// 转换为世界时
|
||
utcJde := jde - timezone/24.0
|
||
// 计算视恒星时
|
||
ra, dec := JupiterApparentRaDec(TD2UT(utcJde, true))
|
||
st := Limit360(ApparentSiderealTime(utcJde)*15 + lon)
|
||
// 计算时角
|
||
H := Limit360(st - ra)
|
||
// 高度角、时角与天球座标三角转换公式
|
||
// sin(h)=sin(lat)*sin(dec)+cos(dec)*cos(lat)*cos(H)
|
||
sinHeight := Sin(lat)*Sin(dec) + Cos(dec)*Cos(lat)*Cos(H)
|
||
return ArcSin(sinHeight)
|
||
}
|
||
|
||
func JupiterAzimuth(jde, lon, lat, timezone float64) float64 {
|
||
// 转换为世界时
|
||
utcJde := jde - timezone/24.0
|
||
// 计算视恒星时
|
||
ra, dec := JupiterApparentRaDec(TD2UT(utcJde, true))
|
||
st := Limit360(ApparentSiderealTime(utcJde)*15 + lon)
|
||
// 计算时角
|
||
H := Limit360(st - ra)
|
||
// 三角转换公式
|
||
tanAzimuth := Sin(H) / (Cos(H)*Sin(lat) - Tan(dec)*Cos(lat))
|
||
Azimuth := ArcTan(tanAzimuth)
|
||
if Azimuth < 0 {
|
||
if H/15 < 12 {
|
||
return Azimuth + 360
|
||
}
|
||
return Azimuth + 180
|
||
}
|
||
if H/15 < 12 {
|
||
return Azimuth + 180
|
||
}
|
||
return Azimuth
|
||
}
|
||
|
||
func JupiterHourAngle(JD, Lon, TZ float64) float64 {
|
||
startime := Limit360(ApparentSiderealTime(JD-TZ/24)*15 + Lon)
|
||
timeangle := startime - JupiterApparentRa(TD2UT(JD-TZ/24.0, true))
|
||
if timeangle < 0 {
|
||
timeangle += 360
|
||
}
|
||
return timeangle
|
||
}
|
||
|
||
func JupiterCulminationTime(jde, lon, timezone float64) float64 {
|
||
//jde 世界时,非力学时,当地时区 0时,无需转换力学时
|
||
//ra,dec 瞬时天球座标,非J2000等时间天球坐标
|
||
jde = math.Floor(jde) + 0.5
|
||
JD1 := jde + Limit360(360-JupiterHourAngle(jde, lon, timezone))/15.0/24.0*0.99726851851851851851
|
||
limitHA := func(jde, lon, timezone float64) float64 {
|
||
ha := JupiterHourAngle(jde, lon, timezone)
|
||
if ha < 180 {
|
||
ha += 360
|
||
}
|
||
return ha
|
||
}
|
||
for {
|
||
JD0 := JD1
|
||
stDegree := limitHA(JD0, lon, timezone) - 360
|
||
stDegreep := (limitHA(JD0+0.000005, lon, timezone) - limitHA(JD0-0.000005, lon, timezone)) / 0.00001
|
||
JD1 = JD0 - stDegree/stDegreep
|
||
if math.Abs(JD1-JD0) <= 0.00001 {
|
||
break
|
||
}
|
||
}
|
||
return JD1
|
||
}
|
||
|
||
func JupiterRiseTime(JD, Lon, Lat, TZ, ZS, HEI float64) float64 {
|
||
return jupiterRiseDown(JD, Lon, Lat, TZ, ZS, HEI, true)
|
||
}
|
||
|
||
func JupiterDownTime(JD, Lon, Lat, TZ, ZS, HEI float64) float64 {
|
||
return jupiterRiseDown(JD, Lon, Lat, TZ, ZS, HEI, false)
|
||
}
|
||
|
||
func jupiterRiseDown(JD, Lon, Lat, TZ, ZS, HEI float64, isRise bool) float64 {
|
||
var An float64
|
||
JD = math.Floor(JD) + 0.5
|
||
ntz := math.Round(Lon / 15)
|
||
if ZS != 0 {
|
||
An = -0.8333
|
||
}
|
||
An = An - HeightDegreeByLat(HEI, Lat)
|
||
tztime := JupiterCulminationTime(JD, Lon, ntz)
|
||
if JupiterHeight(tztime, Lon, Lat, ntz) < An {
|
||
return -2 //极夜
|
||
}
|
||
if JupiterHeight(tztime-0.5, Lon, Lat, ntz) > An {
|
||
return -1 //极昼
|
||
}
|
||
dec := HSunApparentDec(TD2UT(tztime-ntz/24, true))
|
||
//(sin(ho)-sin(φ)*sin(δ2))/(cos(φ)*cos(δ2))
|
||
tmp := (Sin(An) - Sin(dec)*Sin(Lat)) / (Cos(dec) * Cos(Lat))
|
||
var rise float64
|
||
if math.Abs(tmp) <= 1 {
|
||
rzsc := ArcCos(tmp) / 15
|
||
if isRise {
|
||
rise = tztime - rzsc/24 - 25.0/24.0/60.0
|
||
} else {
|
||
rise = tztime + rzsc/24 - 25.0/24.0/60.0
|
||
}
|
||
} else {
|
||
rise = tztime
|
||
i := 0
|
||
//TODO:使用二分法计算
|
||
for JupiterHeight(rise, Lon, Lat, ntz) > An {
|
||
i++
|
||
if isRise {
|
||
rise -= 15.0 / 60.0 / 24.0
|
||
} else {
|
||
rise += 15.0 / 60.0 / 24.0
|
||
}
|
||
if i > 48 {
|
||
break
|
||
}
|
||
}
|
||
}
|
||
JD1 := rise
|
||
for {
|
||
JD0 := JD1
|
||
stDegree := JupiterHeight(JD0, Lon, Lat, ntz) - An
|
||
stDegreep := (JupiterHeight(JD0+0.000005, Lon, Lat, ntz) - JupiterHeight(JD0-0.000005, Lon, Lat, ntz)) / 0.00001
|
||
JD1 = JD0 - stDegree/stDegreep
|
||
if math.Abs(JD1-JD0) <= 0.00001 {
|
||
break
|
||
}
|
||
}
|
||
return JD1 - ntz/24 + TZ/24
|
||
}
|
||
|
||
// Pos
|
||
|
||
const JUPITER_S_PERIOD = 1 / ((1 / 365.256363004) - (1 / 4332.59))
|
||
|
||
func jupiterConjunction(jde, degree float64, next uint8) float64 {
|
||
//0=last 1=next
|
||
decSub := func(jde float64, degree float64, filter bool) float64 {
|
||
sub := Limit360(Limit360(JupiterApparentLo(jde)-HSunApparentLo(jde)) - degree)
|
||
if filter {
|
||
if sub > 180 {
|
||
sub -= 360
|
||
}
|
||
if sub < -180 {
|
||
sub += 360
|
||
}
|
||
}
|
||
return sub
|
||
}
|
||
dayCost := JUPITER_S_PERIOD / 360
|
||
nowSub := decSub(jde, degree, false)
|
||
if next == 0 {
|
||
jde -= (360 - nowSub) * dayCost
|
||
} else {
|
||
jde += dayCost * nowSub
|
||
}
|
||
JD1 := jde
|
||
for {
|
||
JD0 := JD1
|
||
stDegree := decSub(JD0, degree, true)
|
||
stDegreep := (decSub(JD0+0.000005, degree, true) - decSub(JD0-0.000005, degree, true)) / 0.00001
|
||
JD1 = JD0 - stDegree/stDegreep
|
||
if math.Abs(JD1-JD0) <= 0.00001 {
|
||
break
|
||
}
|
||
}
|
||
return TD2UT(JD1, false)
|
||
}
|
||
|
||
func LastJupiterConjunction(jde float64) float64 {
|
||
return jupiterConjunction(jde, 0, 0)
|
||
}
|
||
|
||
func NextJupiterConjunction(jde float64) float64 {
|
||
return jupiterConjunction(jde, 0, 1)
|
||
}
|
||
|
||
func LastJupiterOpposition(jde float64) float64 {
|
||
return jupiterConjunction(jde, 180, 0)
|
||
}
|
||
|
||
func NextJupiterOpposition(jde float64) float64 {
|
||
return jupiterConjunction(jde, 180, 1)
|
||
}
|
||
|
||
func NextJupiterEasternQuadrature(jde float64) float64 {
|
||
return jupiterConjunction(jde, 90, 1)
|
||
}
|
||
|
||
func LastJupiterEasternQuadrature(jde float64) float64 {
|
||
return jupiterConjunction(jde, 90, 0)
|
||
}
|
||
|
||
func NextJupiterWesternQuadrature(jde float64) float64 {
|
||
return jupiterConjunction(jde, 270, 1)
|
||
}
|
||
|
||
func LastJupiterWesternQuadrature(jde float64) float64 {
|
||
return jupiterConjunction(jde, 270, 0)
|
||
}
|
||
|
||
func jupiterRetrograde(jde float64, isLeft bool) float64 {
|
||
//0=last 1=next
|
||
decSub := func(jde float64, val float64) float64 {
|
||
sub := JupiterApparentRa(jde+val) - JupiterApparentRa(jde-val)
|
||
if sub > 180 {
|
||
sub -= 360
|
||
}
|
||
if sub < -180 {
|
||
sub += 360
|
||
}
|
||
return sub / (2 * val)
|
||
}
|
||
jde = NextJupiterOpposition(jde)
|
||
if isLeft {
|
||
jde -= 60
|
||
} else {
|
||
jde += 60
|
||
}
|
||
for {
|
||
nowSub := decSub(jde, 1.0/86400.0)
|
||
if math.Abs(nowSub) > 0.55 {
|
||
jde += 2
|
||
continue
|
||
}
|
||
break
|
||
}
|
||
JD1 := jde
|
||
for {
|
||
JD0 := JD1
|
||
stDegree := decSub(JD0, 2.0/86400.0)
|
||
stDegreep := (decSub(JD0+15.0/86400.0, 2.0/86400.0) - decSub(JD0-15.0/86400.0, 2.0/86400.0)) / (30.0 / 86400.0)
|
||
JD1 = JD0 - stDegree/stDegreep
|
||
if math.Abs(JD1-JD0) <= 30.0/86400.0 {
|
||
break
|
||
}
|
||
}
|
||
JD1 = JD1 - 15.0/86400.0
|
||
min := JD1
|
||
minRa := 100.0
|
||
for i := 0.0; i < 60.0; i++ {
|
||
tmp := decSub(JD1+i*0.5/86400.0, 0.5/86400.0)
|
||
if math.Abs(tmp) < math.Abs(minRa) {
|
||
minRa = tmp
|
||
min = JD1 + i*0.5/86400.0
|
||
}
|
||
}
|
||
return TD2UT(min, false)
|
||
}
|
||
|
||
func NextJupiterRetrogradeToPrograde(jde float64) float64 {
|
||
date := jupiterRetrograde(jde, false)
|
||
if date < jde {
|
||
op := NextJupiterOpposition(jde)
|
||
return jupiterRetrograde(op+10, false)
|
||
}
|
||
return date
|
||
}
|
||
|
||
func LastJupiterRetrogradeToPrograde(jde float64) float64 {
|
||
jde = LastJupiterOpposition(jde) - 10
|
||
date := jupiterRetrograde(jde, false)
|
||
if date > jde {
|
||
op := LastJupiterOpposition(jde)
|
||
return jupiterRetrograde(op-10, false)
|
||
}
|
||
return date
|
||
}
|
||
|
||
func NextJupiterProgradeToRetrograde(jde float64) float64 {
|
||
date := jupiterRetrograde(jde, true)
|
||
if date < jde {
|
||
op := NextJupiterOpposition(jde)
|
||
return jupiterRetrograde(op+10, true)
|
||
}
|
||
return date
|
||
}
|
||
|
||
func LastJupiterProgradeToRetrograde(jde float64) float64 {
|
||
jde = LastJupiterOpposition(jde) - 10
|
||
date := jupiterRetrograde(jde, true)
|
||
if date > jde {
|
||
op := LastJupiterOpposition(jde)
|
||
return jupiterRetrograde(op-10, true)
|
||
}
|
||
return date
|
||
}
|