You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
astro/basic/mercury.go

609 lines
15 KiB
Go

5 years ago
package basic
import (
"math"
"b612.me/astro/planet"
. "b612.me/astro/tools"
)
func MercuryL(JD float64) float64 {
return planet.WherePlanet(1, 0, JD)
}
func MercuryB(JD float64) float64 {
return planet.WherePlanet(1, 1, JD)
}
func MercuryR(JD float64) float64 {
return planet.WherePlanet(1, 2, JD)
}
func AMercuryX(JD float64) float64 {
l := MercuryL(JD)
b := MercuryB(JD)
r := MercuryR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
return x
}
func AMercuryY(JD float64) float64 {
l := MercuryL(JD)
b := MercuryB(JD)
r := MercuryR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
return y
}
func AMercuryZ(JD float64) float64 {
//l := MercuryL(JD)
b := MercuryB(JD)
r := MercuryR(JD)
// el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
z := r*Sin(b) - er*Sin(eb)
return z
}
func AMercuryXYZ(JD float64) (float64, float64, float64) {
l := MercuryL(JD)
b := MercuryB(JD)
r := MercuryR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
z := r*Sin(b) - er*Sin(eb)
return x, y, z
}
func MercuryApparentRa(JD float64) float64 {
lo, bo := MercuryApparentLoBo(JD)
return LoToRa(JD, lo, bo)
5 years ago
}
func MercuryApparentDec(JD float64) float64 {
lo, bo := MercuryApparentLoBo(JD)
5 years ago
sita := Sita(JD)
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return dec
}
func MercuryApparentRaDec(JD float64) (float64, float64) {
lo, bo := MercuryApparentLoBo(JD)
return LoBoToRaDec(JD, lo, bo)
5 years ago
}
func EarthMercuryAway(JD float64) float64 {
x, y, z := AMercuryXYZ(JD)
to := math.Sqrt(x*x + y*y + z*z)
return to
}
func MercuryApparentLo(JD float64) float64 {
5 years ago
x, y, z := AMercuryXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMercuryXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
lo += HJZD(JD)
return lo
}
func MercuryApparentBo(JD float64) float64 {
5 years ago
x, y, z := AMercuryXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMercuryXYZ(JD - to)
//lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
//lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
//lo+=GXCLo(lo,bo,JD);
//bo+=GXCBo(lo,bo,JD)/3600;
//lo+=HJZD(JD);
return bo
}
func MercuryApparentLoBo(JD float64) (float64, float64) {
5 years ago
x, y, z := AMercuryXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMercuryXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo) + HJZD(JD)
5 years ago
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
return lo, bo
}
func MercuryMag(JD float64) float64 {
AwaySun := MercuryR(JD)
AwayEarth := EarthMercuryAway(JD)
Away := planet.WherePlanet(-1, 2, JD)
i := (AwaySun*AwaySun + AwayEarth*AwayEarth - Away*Away) / (2 * AwaySun * AwayEarth)
i = ArcCos(i)
Mag := -0.42 + 5*math.Log10(AwaySun*AwayEarth) + 0.0380*i - 0.000273*i*i + 0.000002*i*i*i
return FloatRound(Mag, 2)
}
func MercuryHeight(jde, lon, lat, timezone float64) float64 {
// 转换为世界时
utcJde := jde - timezone/24.0
// 计算视恒星时
ra, dec := MercuryApparentRaDec(TD2UT(utcJde, true))
st := Limit360(ApparentSiderealTime(utcJde)*15 + lon)
// 计算时角
H := Limit360(st - ra)
// 高度角、时角与天球座标三角转换公式
// sin(h)=sin(lat)*sin(dec)+cos(dec)*cos(lat)*cos(H)
sinHeight := Sin(lat)*Sin(dec) + Cos(dec)*Cos(lat)*Cos(H)
return ArcSin(sinHeight)
}
func MercuryAzimuth(jde, lon, lat, timezone float64) float64 {
// 转换为世界时
utcJde := jde - timezone/24.0
// 计算视恒星时
ra, dec := MercuryApparentRaDec(TD2UT(utcJde, true))
st := Limit360(ApparentSiderealTime(utcJde)*15 + lon)
// 计算时角
H := Limit360(st - ra)
// 三角转换公式
tanAzimuth := Sin(H) / (Cos(H)*Sin(lat) - Tan(dec)*Cos(lat))
Azimuth := ArcTan(tanAzimuth)
if Azimuth < 0 {
if H/15 < 12 {
return Azimuth + 360
}
return Azimuth + 180
}
if H/15 < 12 {
return Azimuth + 180
}
return Azimuth
}
func MercuryHourAngle(JD, Lon, TZ float64) float64 {
startime := Limit360(ApparentSiderealTime(JD-TZ/24)*15 + Lon)
timeangle := startime - MercuryApparentRa(TD2UT(JD-TZ/24.0, true))
if timeangle < 0 {
timeangle += 360
}
return timeangle
}
func MercuryCulminationTime(jde, lon, timezone float64) float64 {
//jde 世界时,非力学时,当地时区 0时无需转换力学时
//ra,dec 瞬时天球座标非J2000等时间天球坐标
jde = math.Floor(jde) + 0.5
JD1 := jde + Limit360(360-MercuryHourAngle(jde, lon, timezone))/15.0/24.0*0.99726851851851851851
limitHA := func(jde, lon, timezone float64) float64 {
ha := MercuryHourAngle(jde, lon, timezone)
if ha < 180 {
ha += 360
}
return ha
}
for {
JD0 := JD1
stDegree := limitHA(JD0, lon, timezone) - 360
stDegreep := (limitHA(JD0+0.000005, lon, timezone) - limitHA(JD0-0.000005, lon, timezone)) / 0.00001
JD1 = JD0 - stDegree/stDegreep
if math.Abs(JD1-JD0) <= 0.00001 {
break
}
}
return JD1
}
func MercuryRiseTime(JD, Lon, Lat, TZ, ZS, HEI float64) float64 {
return mercuryRiseDown(JD, Lon, Lat, TZ, ZS, HEI, true)
}
func MercuryDownTime(JD, Lon, Lat, TZ, ZS, HEI float64) float64 {
return mercuryRiseDown(JD, Lon, Lat, TZ, ZS, HEI, false)
}
func mercuryRiseDown(JD, Lon, Lat, TZ, ZS, HEI float64, isRise bool) float64 {
var An float64
JD = math.Floor(JD) + 0.5
ntz := math.Round(Lon / 15)
if ZS != 0 {
An = -0.8333
}
An = An - HeightDegreeByLat(HEI, Lat)
tztime := MercuryCulminationTime(JD, Lon, ntz)
if MercuryHeight(tztime, Lon, Lat, ntz) < An {
return -2 //极夜
}
if MercuryHeight(tztime-0.5, Lon, Lat, ntz) > An {
return -1 //极昼
}
dec := HSunApparentDec(TD2UT(tztime-ntz/24, true))
//(sin(ho)-sin(φ)*sin(δ2))/(cos(φ)*cos(δ2))
tmp := (Sin(An) - Sin(dec)*Sin(Lat)) / (Cos(dec) * Cos(Lat))
var rise float64
if math.Abs(tmp) <= 1 {
rzsc := ArcCos(tmp) / 15
if isRise {
rise = tztime - rzsc/24 - 25.0/24.0/60.0
} else {
rise = tztime + rzsc/24 - 25.0/24.0/60.0
}
} else {
rise = tztime
i := 0
//TODO:使用二分法计算
for MercuryHeight(rise, Lon, Lat, ntz) > An {
i++
if isRise {
rise -= 15.0 / 60.0 / 24.0
} else {
rise += 15.0 / 60.0 / 24.0
}
if i > 48 {
break
}
}
}
JD1 := rise
for {
JD0 := JD1
stDegree := MercuryHeight(JD0, Lon, Lat, ntz) - An
stDegreep := (MercuryHeight(JD0+0.000005, Lon, Lat, ntz) - MercuryHeight(JD0-0.000005, Lon, Lat, ntz)) / 0.00001
JD1 = JD0 - stDegree/stDegreep
if math.Abs(JD1-JD0) <= 0.00001 {
break
}
}
return JD1 - ntz/24 + TZ/24
}
// Pos
const MERCURY_S_PERIOD = 1 / ((1 / 87.9691) - (1 / 365.256363004))
func mercuryConjunction(jde float64, next uint8) float64 {
//0=last 1=next
decSub := func(jde float64) float64 {
sub := Limit360(MercuryApparentLo(jde) - HSunApparentLo(jde))
if sub > 180 {
sub -= 360
}
if sub < -180 {
sub += 360
}
return sub
}
nowSub := decSub(jde)
// pos 大于0:远离太阳 小于0:靠近太阳
pos := math.Abs(decSub(jde+1/86400.0)) - math.Abs(nowSub)
if pos >= 0 && next == 1 && nowSub > 0 {
jde += MERCURY_S_PERIOD/8.0 + 2
}
if pos >= 0 && next == 1 && nowSub < 0 {
jde += MERCURY_S_PERIOD/6.0 + 2
}
if pos <= 0 && next == 0 && nowSub < 0 {
jde -= MERCURY_S_PERIOD/8.0 + 2
}
if pos <= 0 && next == 0 && nowSub > 0 {
jde -= MERCURY_S_PERIOD/6.0 + 2
}
for {
nowSub := decSub(jde)
pos := math.Abs(decSub(jde+1/86400.0)) - math.Abs(nowSub)
if math.Abs(nowSub) > 12 || (pos > 0 && next == 1) || (pos < 0 && next == 0) {
if next == 1 {
jde += 2
} else {
jde -= 2
}
continue
}
break
}
JD1 := jde
for {
JD0 := JD1
stDegree := decSub(JD0)
stDegreep := (decSub(JD0+0.000005) - decSub(JD0-0.000005)) / 0.00001
JD1 = JD0 - stDegree/stDegreep
if math.Abs(JD1-JD0) <= 0.00001 {
break
}
}
return TD2UT(JD1, false)
}
func LastMercuryConjunction(jde float64) float64 {
return mercuryConjunction(jde, 0)
}
func NextMercuryConjunction(jde float64) float64 {
return mercuryConjunction(jde, 1)
}
func NextMercuryInferiorConjunction(jde float64) float64 {
date := NextMercuryConjunction(jde)
if EarthMercuryAway(date) > EarthAway(date) {
return NextMercuryConjunction(date + 2)
}
return date
}
func NextMercurySuperiorConjunction(jde float64) float64 {
date := NextMercuryConjunction(jde)
if EarthMercuryAway(date) < EarthAway(date) {
return NextMercuryConjunction(date + 2)
}
return date
}
func LastMercuryInferiorConjunction(jde float64) float64 {
date := LastMercuryConjunction(jde)
if EarthMercuryAway(date) > EarthAway(date) {
return LastMercuryConjunction(date - 2)
}
return date
}
func LastMercurySuperiorConjunction(jde float64) float64 {
date := LastMercuryConjunction(jde)
if EarthMercuryAway(date) < EarthAway(date) {
return LastMercuryConjunction(date - 2)
}
return date
}
func mercuryRetrograde(jde float64) float64 {
//0=last 1=next
decSunSub := func(jde float64) float64 {
sub := Limit360(MercuryApparentRa(jde) - SunApparentRa(jde))
if sub > 180 {
sub -= 360
}
if sub < -180 {
sub += 360
}
return sub
}
decSub := func(jde float64, val float64) float64 {
sub := MercuryApparentRa(jde+val) - MercuryApparentRa(jde-val)
if sub > 180 {
sub -= 360
}
if sub < -180 {
sub += 360
}
return sub / (2 * val)
}
lastHe := LastMercuryConjunction(jde)
nextHe := NextMercuryConjunction(jde)
nowSub := decSunSub(jde)
if nowSub > 0 {
jde = lastHe + ((nextHe - lastHe) / 5.0 * 3.5)
} else {
jde = lastHe + ((nextHe - lastHe) / 5.5)
}
for {
nowSub := decSub(jde, 1.0/86400.0)
if math.Abs(nowSub) > 0.55 {
jde += 2
continue
}
break
}
JD1 := jde
for {
JD0 := JD1
stDegree := decSub(JD0, 2.0/86400.0)
stDegreep := (decSub(JD0+15.0/86400.0, 2.0/86400.0) - decSub(JD0-15.0/86400.0, 2.0/86400.0)) / (30.0 / 86400.0)
JD1 = JD0 - stDegree/stDegreep
if math.Abs(JD1-JD0) <= 30.0/86400.0 {
break
}
}
JD1 = JD1 - 15.0/86400.0
min := JD1
minRa := 100.0
for i := 0.0; i < 60.0; i++ {
tmp := decSub(JD1+i*0.5/86400.0, 0.5/86400.0)
if math.Abs(tmp) < math.Abs(minRa) {
minRa = tmp
min = JD1 + i*0.5/86400.0
}
}
//fmt.Println((min - lastHe) / (nextHe - lastHe))
return TD2UT(min, false)
}
func NextMercuryRetrograde(jde float64) float64 {
date := mercuryRetrograde(jde)
if date < jde {
nextHe := NextMercuryConjunction(jde)
return mercuryRetrograde(nextHe + 2)
}
return date
}
func LastMercuryRetrograde(jde float64) float64 {
lastHe := LastMercuryConjunction(jde)
date := mercuryRetrograde(lastHe + 2)
if date > jde {
lastLastHe := LastMercuryConjunction(lastHe - 2)
return mercuryRetrograde(lastLastHe + 2)
}
return date
}
func NextMercuryProgradeToRetrograde(jde float64) float64 {
date := NextMercuryRetrograde(jde)
sub := Limit360(MercuryApparentRa(date) - SunApparentRa(date))
if sub > 180 {
return NextMercuryRetrograde(date + MERCURY_S_PERIOD/2)
}
return date
}
func NextMercuryRetrogradeToPrograde(jde float64) float64 {
date := NextMercuryRetrograde(jde)
sub := Limit360(MercuryApparentRa(date) - SunApparentRa(date))
if sub < 180 {
return NextMercuryRetrograde(date + 12)
}
return date
}
func LastMercuryProgradeToRetrograde(jde float64) float64 {
date := LastMercuryRetrograde(jde)
sub := Limit360(MercuryApparentRa(date) - SunApparentRa(date))
if sub > 180 {
return LastMercuryRetrograde(date - 12)
}
return date
}
func LastMercuryRetrogradeToPrograde(jde float64) float64 {
date := LastMercuryRetrograde(jde)
sub := Limit360(MercuryApparentRa(date) - SunApparentRa(date))
if sub < 180 {
return LastMercuryRetrograde(date - MERCURY_S_PERIOD/2)
}
return date
}
func MercurySunElongation(jde float64) float64 {
lo1, bo1 := MercuryApparentLoBo(jde)
lo2 := SunApparentLo(jde)
bo2 := HSunTrueBo(jde)
return StarAngularSeparation(lo1, bo1, lo2, bo2)
}
func mercuryGreatestElongation(jde float64) float64 {
decSunSub := func(jde float64) float64 {
sub := Limit360(MercuryApparentRa(jde) - SunApparentRa(jde))
if sub > 180 {
sub -= 360
}
if sub < -180 {
sub += 360
}
return sub
}
decSub := func(jde float64, val float64) float64 {
sub := MercurySunElongation(jde+val) - MercurySunElongation(jde-val)
if sub > 180 {
sub -= 360
}
if sub < -180 {
sub += 360
}
return sub / (2 * val)
}
lastHe := LastMercuryConjunction(jde)
nextHe := NextMercuryConjunction(jde)
nowSub := decSunSub(jde)
if nowSub > 0 {
jde = lastHe + ((nextHe - lastHe) / 5.0 * 2.0)
} else {
jde = lastHe + ((nextHe - lastHe) / 6.0)
}
for {
nowSub := decSub(jde, 1.0/86400.0)
if math.Abs(nowSub) > 0.4 {
jde += 2
continue
}
break
}
JD1 := jde
for {
JD0 := JD1
stDegree := decSub(JD0, 2.0/86400.0)
stDegreep := (decSub(JD0+15.0/86400.0, 2.0/86400.0) - decSub(JD0-15.0/86400.0, 2.0/86400.0)) / (30.0 / 86400.0)
JD1 = JD0 - stDegree/stDegreep
if math.Abs(JD1-JD0) <= 30.0/86400.0 {
break
}
}
JD1 = JD1 - 15.0/86400.0
min := JD1
minRa := 100.0
for i := 0.0; i < 60.0; i++ {
tmp := decSub(JD1+i*0.5/86400.0, 0.5/86400.0)
if math.Abs(tmp) < math.Abs(minRa) {
minRa = tmp
min = JD1 + i*0.5/86400.0
}
}
//fmt.Println((min - lastHe) / (nextHe - lastHe))
return TD2UT(min, false)
}
func NextMercuryGreatestElongation(jde float64) float64 {
date := mercuryGreatestElongation(jde)
if date < jde {
nextHe := NextMercuryConjunction(jde)
return mercuryGreatestElongation(nextHe + 2)
}
return date
}
func LastMercuryGreatestElongation(jde float64) float64 {
lastHe := LastMercuryConjunction(jde)
date := mercuryGreatestElongation(lastHe + 2)
if date > jde {
lastLastHe := LastMercuryConjunction(lastHe - 2)
return mercuryGreatestElongation(lastLastHe + 2)
}
return date
}
func NextMercuryGreatestElongationEast(jde float64) float64 {
date := NextMercuryGreatestElongation(jde)
sub := Limit360(MercuryApparentRa(date) - SunApparentRa(date))
if sub > 180 {
return NextMercuryGreatestElongation(date + 1)
}
return date
}
func NextMercuryGreatestElongationWest(jde float64) float64 {
date := NextMercuryGreatestElongation(jde)
sub := Limit360(MercuryApparentRa(date) - SunApparentRa(date))
if sub < 180 {
return NextMercuryGreatestElongation(date + 1)
}
return date
}
func LastMercuryGreatestElongationEast(jde float64) float64 {
date := LastMercuryGreatestElongation(jde)
sub := Limit360(MercuryApparentRa(date) - SunApparentRa(date))
if sub > 180 {
return LastMercuryGreatestElongation(date - 1)
}
return date
}
func LastMercuryGreatestElongationWest(jde float64) float64 {
date := LastMercuryGreatestElongation(jde)
sub := Limit360(MercuryApparentRa(date) - SunApparentRa(date))
if sub < 180 {
return LastMercuryGreatestElongation(date - 1)
}
return date
}