|
|
|
|
package basic
|
|
|
|
|
|
|
|
|
|
import (
|
|
|
|
|
"math"
|
|
|
|
|
|
|
|
|
|
"b612.me/astro/planet"
|
|
|
|
|
. "b612.me/astro/tools"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
func SaturnL(JD float64) float64 {
|
|
|
|
|
return planet.WherePlanet(5, 0, JD)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnB(JD float64) float64 {
|
|
|
|
|
return planet.WherePlanet(5, 1, JD)
|
|
|
|
|
}
|
|
|
|
|
func SaturnR(JD float64) float64 {
|
|
|
|
|
return planet.WherePlanet(5, 2, JD)
|
|
|
|
|
}
|
|
|
|
|
func ASaturnX(JD float64) float64 {
|
|
|
|
|
l := SaturnL(JD)
|
|
|
|
|
b := SaturnB(JD)
|
|
|
|
|
r := SaturnR(JD)
|
|
|
|
|
el := planet.WherePlanet(-1, 0, JD)
|
|
|
|
|
eb := planet.WherePlanet(-1, 1, JD)
|
|
|
|
|
er := planet.WherePlanet(-1, 2, JD)
|
|
|
|
|
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
|
|
|
|
|
return x
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func ASaturnY(JD float64) float64 {
|
|
|
|
|
|
|
|
|
|
l := SaturnL(JD)
|
|
|
|
|
b := SaturnB(JD)
|
|
|
|
|
r := SaturnR(JD)
|
|
|
|
|
el := planet.WherePlanet(-1, 0, JD)
|
|
|
|
|
eb := planet.WherePlanet(-1, 1, JD)
|
|
|
|
|
er := planet.WherePlanet(-1, 2, JD)
|
|
|
|
|
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
|
|
|
|
|
return y
|
|
|
|
|
}
|
|
|
|
|
func ASaturnZ(JD float64) float64 {
|
|
|
|
|
//l := SaturnL(JD)
|
|
|
|
|
b := SaturnB(JD)
|
|
|
|
|
r := SaturnR(JD)
|
|
|
|
|
// el := planet.WherePlanet(-1, 0, JD)
|
|
|
|
|
eb := planet.WherePlanet(-1, 1, JD)
|
|
|
|
|
er := planet.WherePlanet(-1, 2, JD)
|
|
|
|
|
z := r*Sin(b) - er*Sin(eb)
|
|
|
|
|
return z
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func ASaturnXYZ(JD float64) (float64, float64, float64) {
|
|
|
|
|
l := SaturnL(JD)
|
|
|
|
|
b := SaturnB(JD)
|
|
|
|
|
r := SaturnR(JD)
|
|
|
|
|
el := planet.WherePlanet(-1, 0, JD)
|
|
|
|
|
eb := planet.WherePlanet(-1, 1, JD)
|
|
|
|
|
er := planet.WherePlanet(-1, 2, JD)
|
|
|
|
|
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
|
|
|
|
|
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
|
|
|
|
|
z := r*Sin(b) - er*Sin(eb)
|
|
|
|
|
return x, y, z
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnApparentRa(JD float64) float64 {
|
|
|
|
|
lo, bo := SaturnApparentLoBo(JD)
|
|
|
|
|
sita := Sita(JD)
|
|
|
|
|
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
|
|
|
|
|
ra = ra * 180 / math.Pi
|
|
|
|
|
return Limit360(ra)
|
|
|
|
|
}
|
|
|
|
|
func SaturnApparentDec(JD float64) float64 {
|
|
|
|
|
lo, bo := SaturnApparentLoBo(JD)
|
|
|
|
|
sita := Sita(JD)
|
|
|
|
|
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
|
|
|
|
|
return dec
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnApparentRaDec(JD float64) (float64, float64) {
|
|
|
|
|
lo, bo := SaturnApparentLoBo(JD)
|
|
|
|
|
sita := Sita(JD)
|
|
|
|
|
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
|
|
|
|
|
ra = ra * 180 / math.Pi
|
|
|
|
|
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
|
|
|
|
|
return Limit360(ra), dec
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func EarthSaturnAway(JD float64) float64 {
|
|
|
|
|
x, y, z := ASaturnXYZ(JD)
|
|
|
|
|
to := math.Sqrt(x*x + y*y + z*z)
|
|
|
|
|
return to
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnApparentLo(JD float64) float64 {
|
|
|
|
|
x, y, z := ASaturnXYZ(JD)
|
|
|
|
|
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
|
|
|
|
|
x, y, z = ASaturnXYZ(JD - to)
|
|
|
|
|
lo := math.Atan2(y, x)
|
|
|
|
|
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
|
|
|
|
|
lo = lo * 180 / math.Pi
|
|
|
|
|
bo = bo * 180 / math.Pi
|
|
|
|
|
lo = Limit360(lo)
|
|
|
|
|
//lo-=GXCLo(lo,bo,JD)/3600;
|
|
|
|
|
//bo+=GXCBo(lo,bo,JD);
|
|
|
|
|
lo += HJZD(JD)
|
|
|
|
|
return lo
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnApparentBo(JD float64) float64 {
|
|
|
|
|
x, y, z := ASaturnXYZ(JD)
|
|
|
|
|
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
|
|
|
|
|
x, y, z = ASaturnXYZ(JD - to)
|
|
|
|
|
//lo := math.Atan2(y, x)
|
|
|
|
|
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
|
|
|
|
|
//lo = lo * 180 / math.Pi
|
|
|
|
|
bo = bo * 180 / math.Pi
|
|
|
|
|
//lo+=GXCLo(lo,bo,JD);
|
|
|
|
|
//bo+=GXCBo(lo,bo,JD)/3600;
|
|
|
|
|
//lo+=HJZD(JD);
|
|
|
|
|
return bo
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnApparentLoBo(JD float64) (float64, float64) {
|
|
|
|
|
x, y, z := ASaturnXYZ(JD)
|
|
|
|
|
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
|
|
|
|
|
x, y, z = ASaturnXYZ(JD - to)
|
|
|
|
|
lo := math.Atan2(y, x)
|
|
|
|
|
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
|
|
|
|
|
lo = lo * 180 / math.Pi
|
|
|
|
|
bo = bo * 180 / math.Pi
|
|
|
|
|
lo = Limit360(lo)
|
|
|
|
|
//lo-=GXCLo(lo,bo,JD)/3600;
|
|
|
|
|
//bo+=GXCBo(lo,bo,JD);
|
|
|
|
|
lo += HJZD(JD)
|
|
|
|
|
return lo, bo
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnMag(JD float64) float64 {
|
|
|
|
|
AwaySun := SaturnR(JD)
|
|
|
|
|
AwayEarth := EarthSaturnAway(JD)
|
|
|
|
|
Away := planet.WherePlanet(-1, 2, JD)
|
|
|
|
|
i := (AwaySun*AwaySun + AwayEarth*AwayEarth - Away*Away) / (2 * AwaySun * AwayEarth)
|
|
|
|
|
i = ArcCos(i)
|
|
|
|
|
Mag := -8.68 + 5*math.Log10(AwaySun*AwayEarth) + 0.044*i - 2.6*Sin(math.Abs(SaturnRingB(JD))) + 1.25*Sin(math.Abs(SaturnRingB(JD)))*Sin(math.Abs(SaturnRingB(JD)))
|
|
|
|
|
return FloatRound(Mag, 2)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnRingB(JD float64) float64 {
|
|
|
|
|
T := (JD - 2451545) / 36525
|
|
|
|
|
i := 28.075216 - 0.012998*T + 0.000004*T*T
|
|
|
|
|
omi := 169.508470 + 1.394681*T + 0.000412*T*T
|
|
|
|
|
lo, bo := SaturnApparentLoBo(JD)
|
|
|
|
|
B := Sin(i)*Cos(bo)*Sin(lo-omi) - Cos(i)*Cos(bo)
|
|
|
|
|
return ArcSin(B)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnHeight(jde, lon, lat, timezone float64) float64 {
|
|
|
|
|
// 转换为世界时
|
|
|
|
|
utcJde := jde - timezone/24.0
|
|
|
|
|
// 计算视恒星时
|
|
|
|
|
ra, dec := SaturnApparentRaDec(TD2UT(utcJde, true))
|
|
|
|
|
st := Limit360(ApparentSiderealTime(utcJde)*15 + lon)
|
|
|
|
|
// 计算时角
|
|
|
|
|
H := Limit360(st - ra)
|
|
|
|
|
// 高度角、时角与天球座标三角转换公式
|
|
|
|
|
// sin(h)=sin(lat)*sin(dec)+cos(dec)*cos(lat)*cos(H)
|
|
|
|
|
sinHeight := Sin(lat)*Sin(dec) + Cos(dec)*Cos(lat)*Cos(H)
|
|
|
|
|
return ArcSin(sinHeight)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnAzimuth(jde, lon, lat, timezone float64) float64 {
|
|
|
|
|
// 转换为世界时
|
|
|
|
|
utcJde := jde - timezone/24.0
|
|
|
|
|
// 计算视恒星时
|
|
|
|
|
ra, dec := SaturnApparentRaDec(TD2UT(utcJde, true))
|
|
|
|
|
st := Limit360(ApparentSiderealTime(utcJde)*15 + lon)
|
|
|
|
|
// 计算时角
|
|
|
|
|
H := Limit360(st - ra)
|
|
|
|
|
// 三角转换公式
|
|
|
|
|
tanAzimuth := Sin(H) / (Cos(H)*Sin(lat) - Tan(dec)*Cos(lat))
|
|
|
|
|
Azimuth := ArcTan(tanAzimuth)
|
|
|
|
|
if Azimuth < 0 {
|
|
|
|
|
if H/15 < 12 {
|
|
|
|
|
return Azimuth + 360
|
|
|
|
|
}
|
|
|
|
|
return Azimuth + 180
|
|
|
|
|
}
|
|
|
|
|
if H/15 < 12 {
|
|
|
|
|
return Azimuth + 180
|
|
|
|
|
}
|
|
|
|
|
return Azimuth
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnHourAngle(JD, Lon, TZ float64) float64 {
|
|
|
|
|
startime := Limit360(ApparentSiderealTime(JD-TZ/24)*15 + Lon)
|
|
|
|
|
timeangle := startime - SaturnApparentRa(TD2UT(JD-TZ/24.0, true))
|
|
|
|
|
if timeangle < 0 {
|
|
|
|
|
timeangle += 360
|
|
|
|
|
}
|
|
|
|
|
return timeangle
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnCulminationTime(jde, lon, timezone float64) float64 {
|
|
|
|
|
//jde 世界时,非力学时,当地时区 0时,无需转换力学时
|
|
|
|
|
//ra,dec 瞬时天球座标,非J2000等时间天球坐标
|
|
|
|
|
jde = math.Floor(jde) + 0.5
|
|
|
|
|
JD1 := jde + Limit360(360-SaturnHourAngle(jde, lon, timezone))/15.0/24.0*0.99726851851851851851
|
|
|
|
|
limitHA := func(jde, lon, timezone float64) float64 {
|
|
|
|
|
ha := SaturnHourAngle(jde, lon, timezone)
|
|
|
|
|
if ha < 180 {
|
|
|
|
|
ha += 360
|
|
|
|
|
}
|
|
|
|
|
return ha
|
|
|
|
|
}
|
|
|
|
|
for {
|
|
|
|
|
JD0 := JD1
|
|
|
|
|
stDegree := limitHA(JD0, lon, timezone) - 360
|
|
|
|
|
stDegreep := (limitHA(JD0+0.000005, lon, timezone) - limitHA(JD0-0.000005, lon, timezone)) / 0.00001
|
|
|
|
|
JD1 = JD0 - stDegree/stDegreep
|
|
|
|
|
if math.Abs(JD1-JD0) <= 0.00001 {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return JD1
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnRiseTime(JD, Lon, Lat, TZ, ZS, HEI float64) float64 {
|
|
|
|
|
return saturnRiseDown(JD, Lon, Lat, TZ, ZS, HEI, true)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func SaturnDownTime(JD, Lon, Lat, TZ, ZS, HEI float64) float64 {
|
|
|
|
|
return saturnRiseDown(JD, Lon, Lat, TZ, ZS, HEI, false)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func saturnRiseDown(JD, Lon, Lat, TZ, ZS, HEI float64, isRise bool) float64 {
|
|
|
|
|
var An float64
|
|
|
|
|
JD = math.Floor(JD) + 0.5
|
|
|
|
|
ntz := math.Round(Lon / 15)
|
|
|
|
|
if ZS != 0 {
|
|
|
|
|
An = -0.8333
|
|
|
|
|
}
|
|
|
|
|
An = An - HeightDegreeByLat(HEI, Lat)
|
|
|
|
|
tztime := SaturnCulminationTime(JD, Lon, ntz)
|
|
|
|
|
if SaturnHeight(tztime, Lon, Lat, ntz) < An {
|
|
|
|
|
return -2 //极夜
|
|
|
|
|
}
|
|
|
|
|
if SaturnHeight(tztime-0.5, Lon, Lat, ntz) > An {
|
|
|
|
|
return -1 //极昼
|
|
|
|
|
}
|
|
|
|
|
dec := HSunApparentDec(TD2UT(tztime-ntz/24, true))
|
|
|
|
|
//(sin(ho)-sin(φ)*sin(δ2))/(cos(φ)*cos(δ2))
|
|
|
|
|
tmp := (Sin(An) - Sin(dec)*Sin(Lat)) / (Cos(dec) * Cos(Lat))
|
|
|
|
|
var rise float64
|
|
|
|
|
if math.Abs(tmp) <= 1 {
|
|
|
|
|
rzsc := ArcCos(tmp) / 15
|
|
|
|
|
if isRise {
|
|
|
|
|
rise = tztime - rzsc/24 - 25.0/24.0/60.0
|
|
|
|
|
} else {
|
|
|
|
|
rise = tztime + rzsc/24 - 25.0/24.0/60.0
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
rise = tztime
|
|
|
|
|
i := 0
|
|
|
|
|
//TODO:使用二分法计算
|
|
|
|
|
for SaturnHeight(rise, Lon, Lat, ntz) > An {
|
|
|
|
|
i++
|
|
|
|
|
if isRise {
|
|
|
|
|
rise -= 15.0 / 60.0 / 24.0
|
|
|
|
|
} else {
|
|
|
|
|
rise += 15.0 / 60.0 / 24.0
|
|
|
|
|
}
|
|
|
|
|
if i > 48 {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
JD1 := rise
|
|
|
|
|
for {
|
|
|
|
|
JD0 := JD1
|
|
|
|
|
stDegree := SaturnHeight(JD0, Lon, Lat, ntz) - An
|
|
|
|
|
stDegreep := (SaturnHeight(JD0+0.000005, Lon, Lat, ntz) - SaturnHeight(JD0-0.000005, Lon, Lat, ntz)) / 0.00001
|
|
|
|
|
JD1 = JD0 - stDegree/stDegreep
|
|
|
|
|
if math.Abs(JD1-JD0) <= 0.00001 {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return JD1 - ntz/24 + TZ/24
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Pos
|
|
|
|
|
|
|
|
|
|
const SATURN_S_PERIOD = 1 / ((1 / 365.256363004) - (1 / 10759.0))
|
|
|
|
|
|
|
|
|
|
func saturnConjunction(jde, degree float64, next uint8) float64 {
|
|
|
|
|
//0=last 1=next
|
|
|
|
|
decSub := func(jde float64, degree float64, filter bool) float64 {
|
|
|
|
|
sub := Limit360(Limit360(SaturnApparentLo(jde)-HSunApparentLo(jde)) - degree)
|
|
|
|
|
if filter {
|
|
|
|
|
if sub > 180 {
|
|
|
|
|
sub -= 360
|
|
|
|
|
}
|
|
|
|
|
if sub < -180 {
|
|
|
|
|
sub += 360
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return sub
|
|
|
|
|
}
|
|
|
|
|
dayCost := SATURN_S_PERIOD / 360
|
|
|
|
|
nowSub := decSub(jde, degree, false)
|
|
|
|
|
if next == 0 {
|
|
|
|
|
jde -= (360 - nowSub) * dayCost
|
|
|
|
|
} else {
|
|
|
|
|
jde += dayCost * nowSub
|
|
|
|
|
}
|
|
|
|
|
JD1 := jde
|
|
|
|
|
for {
|
|
|
|
|
JD0 := JD1
|
|
|
|
|
stDegree := decSub(JD0, degree, true)
|
|
|
|
|
stDegreep := (decSub(JD0+0.000005, degree, true) - decSub(JD0-0.000005, degree, true)) / 0.00001
|
|
|
|
|
JD1 = JD0 - stDegree/stDegreep
|
|
|
|
|
if math.Abs(JD1-JD0) <= 0.00001 {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return TD2UT(JD1, false)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func LastSaturnConjunction(jde float64) float64 {
|
|
|
|
|
return saturnConjunction(jde, 0, 0)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func NextSaturnConjunction(jde float64) float64 {
|
|
|
|
|
return saturnConjunction(jde, 0, 1)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func LastSaturnOpposition(jde float64) float64 {
|
|
|
|
|
return saturnConjunction(jde, 180, 0)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func NextSaturnOpposition(jde float64) float64 {
|
|
|
|
|
return saturnConjunction(jde, 180, 1)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func NextSaturnEasternQuadrature(jde float64) float64 {
|
|
|
|
|
return saturnConjunction(jde, 90, 1)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func LastSaturnEasternQuadrature(jde float64) float64 {
|
|
|
|
|
return saturnConjunction(jde, 90, 0)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func NextSaturnWesternQuadrature(jde float64) float64 {
|
|
|
|
|
return saturnConjunction(jde, 270, 1)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func LastSaturnWesternQuadrature(jde float64) float64 {
|
|
|
|
|
return saturnConjunction(jde, 270, 0)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func saturnRetrograde(jde float64, isLeft bool) float64 {
|
|
|
|
|
//0=last 1=next
|
|
|
|
|
decSub := func(jde float64, val float64) float64 {
|
|
|
|
|
sub := SaturnApparentRa(jde+val) - SaturnApparentRa(jde-val)
|
|
|
|
|
if sub > 180 {
|
|
|
|
|
sub -= 360
|
|
|
|
|
}
|
|
|
|
|
if sub < -180 {
|
|
|
|
|
sub += 360
|
|
|
|
|
}
|
|
|
|
|
return sub / (2 * val)
|
|
|
|
|
}
|
|
|
|
|
jde = NextSaturnOpposition(jde)
|
|
|
|
|
if isLeft {
|
|
|
|
|
jde -= 60
|
|
|
|
|
} else {
|
|
|
|
|
jde += 60
|
|
|
|
|
}
|
|
|
|
|
for {
|
|
|
|
|
nowSub := decSub(jde, 1.0/86400.0)
|
|
|
|
|
if math.Abs(nowSub) > 0.55 {
|
|
|
|
|
jde += 2
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
JD1 := jde
|
|
|
|
|
for {
|
|
|
|
|
JD0 := JD1
|
|
|
|
|
stDegree := decSub(JD0, 2.0/86400.0)
|
|
|
|
|
stDegreep := (decSub(JD0+15.0/86400.0, 2.0/86400.0) - decSub(JD0-15.0/86400.0, 2.0/86400.0)) / (30.0 / 86400.0)
|
|
|
|
|
JD1 = JD0 - stDegree/stDegreep
|
|
|
|
|
if math.Abs(JD1-JD0) <= 30.0/86400.0 {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
JD1 = JD1 - 15.0/86400.0
|
|
|
|
|
min := JD1
|
|
|
|
|
minRa := 100.0
|
|
|
|
|
for i := 0.0; i < 60.0; i++ {
|
|
|
|
|
tmp := decSub(JD1+i*0.5/86400.0, 0.5/86400.0)
|
|
|
|
|
if math.Abs(tmp) < math.Abs(minRa) {
|
|
|
|
|
minRa = tmp
|
|
|
|
|
min = JD1 + i*0.5/86400.0
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return TD2UT(min, false)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func NextSaturnRetrogradeToPrograde(jde float64) float64 {
|
|
|
|
|
date := saturnRetrograde(jde, false)
|
|
|
|
|
if date < jde {
|
|
|
|
|
op := NextSaturnOpposition(jde)
|
|
|
|
|
return saturnRetrograde(op+10, false)
|
|
|
|
|
}
|
|
|
|
|
return date
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func LastSaturnRetrogradeToPrograde(jde float64) float64 {
|
|
|
|
|
jde = LastSaturnOpposition(jde) - 10
|
|
|
|
|
date := saturnRetrograde(jde, false)
|
|
|
|
|
if date > jde {
|
|
|
|
|
op := LastSaturnOpposition(jde)
|
|
|
|
|
return saturnRetrograde(op-10, false)
|
|
|
|
|
}
|
|
|
|
|
return date
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func NextSaturnProgradeToRetrograde(jde float64) float64 {
|
|
|
|
|
date := saturnRetrograde(jde, true)
|
|
|
|
|
if date < jde {
|
|
|
|
|
op := NextSaturnOpposition(jde)
|
|
|
|
|
return saturnRetrograde(op+10, true)
|
|
|
|
|
}
|
|
|
|
|
return date
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func LastSaturnProgradeToRetrograde(jde float64) float64 {
|
|
|
|
|
jde = LastSaturnOpposition(jde) - 10
|
|
|
|
|
date := saturnRetrograde(jde, true)
|
|
|
|
|
if date > jde {
|
|
|
|
|
op := LastSaturnOpposition(jde)
|
|
|
|
|
return saturnRetrograde(op-10, true)
|
|
|
|
|
}
|
|
|
|
|
return date
|
|
|
|
|
}
|