310 lines
7.7 KiB
Go
310 lines
7.7 KiB
Go
|
package basic
|
||
|
|
||
|
import "math"
|
||
|
|
||
|
// Precess 函数实现了基于 Explanatory Supplement 2nd ed. table 3.211.1 的岁差计算
|
||
|
// ra0, dec0: 初始赤经和赤纬(弧度)
|
||
|
// JD0: 初始儒略日
|
||
|
// JD: 目标儒略日
|
||
|
// 返回: 目标历元的赤经和赤纬(弧度)
|
||
|
func PrecessIAU1976(ra0, dec0, JD0, JD float64) (float64, float64) {
|
||
|
// 定义常量
|
||
|
ra0 *= rad
|
||
|
dec0 *= rad
|
||
|
t := (JD - JD0) / 36525.0
|
||
|
T := (JD0 - 2451545.0) / 36525.0
|
||
|
|
||
|
// Explanatory Supplement 2nd ed. table 3.211.1
|
||
|
zeta := ((2306.2181+1.39656*T-0.000139*T*T)*t +
|
||
|
(0.30188-0.000344*T)*t*t + 0.017998*t*t*t) / 3600.0 * rad
|
||
|
|
||
|
z := ((2306.2181+1.39656*T-0.000139*T*T)*t +
|
||
|
(1.09468+0.000066*T)*t*t + 0.018203*t*t*t) / 3600.0 * rad
|
||
|
|
||
|
theta := ((2004.3109-0.85330*T-0.000217*T*T)*t -
|
||
|
(0.42665+0.000217*T)*t*t - 0.041833*t*t*t) / 3600.0 * rad
|
||
|
|
||
|
A := math.Cos(dec0) * math.Sin(ra0+z)
|
||
|
B := math.Cos(theta)*math.Cos(dec0)*math.Cos(ra0+z) - math.Sin(theta)*math.Sin(dec0)
|
||
|
C := math.Sin(theta)*math.Cos(dec0)*math.Cos(ra0+z) + math.Cos(theta)*math.Sin(dec0)
|
||
|
|
||
|
raMinZ := math.Atan2(A, B)
|
||
|
dec := math.Asin(C)
|
||
|
ra := raMinZ + zeta
|
||
|
|
||
|
return ra / rad, dec / rad
|
||
|
}
|
||
|
|
||
|
// 常量定义
|
||
|
const (
|
||
|
AS2R = 4.848136811095359935899141e-6 // 角秒到弧度的转换因子
|
||
|
D2PI = 6.283185307179586476925287 // 2π
|
||
|
EPS0 = 84381.406 * AS2R // J2000.0历元的黄赤交角(弧度)
|
||
|
)
|
||
|
|
||
|
// 赤道坐标结构体
|
||
|
type Equatorial struct {
|
||
|
RA float64 // 赤经(度)
|
||
|
Dec float64 // 赤纬(度)
|
||
|
}
|
||
|
|
||
|
// 三维向量
|
||
|
type Vector3 [3]float64
|
||
|
|
||
|
// 三维矩阵
|
||
|
type Matrix3 [3][3]float64
|
||
|
|
||
|
// 计算长期岁差的黄极向量
|
||
|
func ltpPECL(epj float64) Vector3 {
|
||
|
// 多项式系数
|
||
|
pqPol := [2][4]float64{
|
||
|
{+5851.607687, -0.1189000, -0.00028913, +0.000000101},
|
||
|
{-1600.886300, +1.1689818, -0.00000020, -0.000000437},
|
||
|
}
|
||
|
|
||
|
// 周期项系数
|
||
|
pqPer := [8][5]float64{
|
||
|
{708.15, -5486.751211, -684.661560, 667.666730, -5523.863691},
|
||
|
{2309.00, -17.127623, 2446.283880, -2354.886252, -549.747450},
|
||
|
{1620.00, -617.517403, 399.671049, -428.152441, -310.998056},
|
||
|
{492.20, 413.442940, -356.652376, 376.202861, 421.535876},
|
||
|
{1183.00, 78.614193, -186.387003, 184.778874, -36.776172},
|
||
|
{622.00, -180.732815, -316.800070, 335.321713, -145.278396},
|
||
|
{882.00, -87.676083, 198.296071, -185.138669, -34.744450},
|
||
|
{547.00, 46.140315, 101.135679, -120.972830, 22.885731},
|
||
|
}
|
||
|
|
||
|
// 计算从J2000.0起算的儒略世纪数
|
||
|
t := (epj - 2000.0) / 100.0
|
||
|
|
||
|
// 初始化P和Q累加器
|
||
|
p, q := 0.0, 0.0
|
||
|
|
||
|
// 周期项
|
||
|
for i := 0; i < 8; i++ {
|
||
|
w := D2PI * t
|
||
|
a := w / pqPer[i][0]
|
||
|
s := math.Sin(a)
|
||
|
c := math.Cos(a)
|
||
|
p += c*pqPer[i][1] + s*pqPer[i][3]
|
||
|
q += c*pqPer[i][2] + s*pqPer[i][4]
|
||
|
}
|
||
|
|
||
|
// 多项式项
|
||
|
w := 1.0
|
||
|
for i := 0; i < 4; i++ {
|
||
|
p += pqPol[0][i] * w
|
||
|
q += pqPol[1][i] * w
|
||
|
w *= t
|
||
|
}
|
||
|
|
||
|
// 转换为弧度
|
||
|
p *= AS2R
|
||
|
q *= AS2R
|
||
|
|
||
|
// 形成黄极向量
|
||
|
z := math.Sqrt(math.Max(1.0-p*p-q*q, 0.0))
|
||
|
s := math.Sin(EPS0)
|
||
|
c := math.Cos(EPS0)
|
||
|
|
||
|
return Vector3{p, -q*c - z*s, -q*s + z*c}
|
||
|
}
|
||
|
|
||
|
// 计算长期岁差的赤道极向量
|
||
|
func ltpPEQU(epj float64) Vector3 {
|
||
|
// 多项式系数
|
||
|
xyPol := [2][4]float64{
|
||
|
{+5453.282155, +0.4252841, -0.00037173, -0.000000152},
|
||
|
{-73750.930350, -0.7675452, -0.00018725, +0.000000231},
|
||
|
}
|
||
|
|
||
|
// 周期项系数
|
||
|
xyPer := [14][5]float64{
|
||
|
{256.75, -819.940624, 75004.344875, 81491.287984, 1558.515853},
|
||
|
{708.15, -8444.676815, 624.033993, 787.163481, 7774.939698},
|
||
|
{274.20, 2600.009459, 1251.136893, 1251.296102, -2219.534038},
|
||
|
{241.45, 2755.175630, -1102.212834, -1257.950837, -2523.969396},
|
||
|
{2309.00, -167.659835, -2660.664980, -2966.799730, 247.850422},
|
||
|
{492.20, 871.855056, 699.291817, 639.744522, -846.485643},
|
||
|
{396.10, 44.769698, 153.167220, 131.600209, -1393.124055},
|
||
|
{288.90, -512.313065, -950.865637, -445.040117, 368.526116},
|
||
|
{231.10, -819.415595, 499.754645, 584.522874, 749.045012},
|
||
|
{1610.00, -538.071099, -145.188210, -89.756563, 444.704518},
|
||
|
{620.00, -189.793622, 558.116553, 524.429630, 235.934465},
|
||
|
{157.87, -402.922932, -23.923029, -13.549067, 374.049623},
|
||
|
{220.30, 179.516345, -165.405086, -210.157124, -171.330180},
|
||
|
{1200.00, -9.814756, 9.344131, -44.919798, -22.899655},
|
||
|
}
|
||
|
|
||
|
// 计算从J2000.0起算的儒略世纪数
|
||
|
t := (epj - 2000.0) / 100.0
|
||
|
|
||
|
// 初始化X和Y累加器
|
||
|
x, y := 0.0, 0.0
|
||
|
|
||
|
// 周期项
|
||
|
for i := 0; i < 14; i++ {
|
||
|
w := D2PI * t
|
||
|
a := w / xyPer[i][0]
|
||
|
s := math.Sin(a)
|
||
|
c := math.Cos(a)
|
||
|
x += c*xyPer[i][1] + s*xyPer[i][3]
|
||
|
y += c*xyPer[i][2] + s*xyPer[i][4]
|
||
|
}
|
||
|
|
||
|
// 多项式项
|
||
|
w := 1.0
|
||
|
for i := 0; i < 4; i++ {
|
||
|
x += xyPol[0][i] * w
|
||
|
y += xyPol[1][i] * w
|
||
|
w *= t
|
||
|
}
|
||
|
|
||
|
// 转换为弧度
|
||
|
x *= AS2R
|
||
|
y *= AS2R
|
||
|
|
||
|
// 形成赤道极向量
|
||
|
w = x*x + y*y
|
||
|
z := 0.0
|
||
|
if w < 1.0 {
|
||
|
z = math.Sqrt(1.0 - w)
|
||
|
}
|
||
|
|
||
|
return Vector3{x, y, z}
|
||
|
}
|
||
|
|
||
|
// 向量叉乘
|
||
|
func pxp(a, b Vector3) Vector3 {
|
||
|
return Vector3{
|
||
|
a[1]*b[2] - a[2]*b[1],
|
||
|
a[2]*b[0] - a[0]*b[2],
|
||
|
a[0]*b[1] - a[1]*b[0],
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 向量归一化
|
||
|
func pn(p Vector3) (Vector3, float64) {
|
||
|
w := math.Sqrt(p[0]*p[0] + p[1]*p[1] + p[2]*p[2])
|
||
|
if w == 0.0 {
|
||
|
return Vector3{0, 0, 0}, 0
|
||
|
}
|
||
|
return Vector3{p[0] / w, p[1] / w, p[2] / w}, w
|
||
|
}
|
||
|
|
||
|
// 计算长期岁差矩阵
|
||
|
func ltpPMAT(epj float64) Matrix3 {
|
||
|
// 计算赤道极向量和黄极向量
|
||
|
peqr := ltpPEQU(epj)
|
||
|
pecl := ltpPECL(epj)
|
||
|
|
||
|
// 计算春分点向量
|
||
|
v := pxp(peqr, pecl)
|
||
|
eqx, _ := pn(v)
|
||
|
|
||
|
// 计算中间行向量
|
||
|
v = pxp(peqr, eqx)
|
||
|
|
||
|
// 形成旋转矩阵
|
||
|
return Matrix3{
|
||
|
{eqx[0], eqx[1], eqx[2]},
|
||
|
{v[0], v[1], v[2]},
|
||
|
{peqr[0], peqr[1], peqr[2]},
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 计算包含GCRS框架偏差的长期岁差矩阵
|
||
|
func ltpPBMAT(epj float64) Matrix3 {
|
||
|
// 框架偏差 (IERS Conventions 2010, Eqs. 5.21 and 5.33)
|
||
|
dx := -0.016617 * AS2R
|
||
|
de := -0.0068192 * AS2R
|
||
|
dr := -0.0146 * AS2R
|
||
|
|
||
|
// 计算基本岁差矩阵
|
||
|
rp := ltpPMAT(epj)
|
||
|
|
||
|
// 应用偏差
|
||
|
return Matrix3{
|
||
|
{
|
||
|
rp[0][0] - rp[0][1]*dr + rp[0][2]*dx,
|
||
|
rp[0][0]*dr + rp[0][1] + rp[0][2]*de,
|
||
|
-rp[0][0]*dx - rp[0][1]*de + rp[0][2],
|
||
|
},
|
||
|
{
|
||
|
rp[1][0] - rp[1][1]*dr + rp[1][2]*dx,
|
||
|
rp[1][0]*dr + rp[1][1] + rp[1][2]*de,
|
||
|
-rp[1][0]*dx - rp[1][1]*de + rp[1][2],
|
||
|
},
|
||
|
{
|
||
|
rp[2][0] - rp[2][1]*dr + rp[2][2]*dx,
|
||
|
rp[2][0]*dr + rp[2][1] + rp[2][2]*de,
|
||
|
-rp[2][0]*dx - rp[2][1]*de + rp[2][2],
|
||
|
},
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 将赤道坐标转换为直角坐标向量
|
||
|
func raDecToVector(ra, dec float64) Vector3 {
|
||
|
raRad := ra * math.Pi / 180
|
||
|
decRad := dec * math.Pi / 180
|
||
|
cosDec := math.Cos(decRad)
|
||
|
return Vector3{
|
||
|
math.Cos(raRad) * cosDec,
|
||
|
math.Sin(raRad) * cosDec,
|
||
|
math.Sin(decRad),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 将直角坐标向量转换为赤道坐标
|
||
|
func vectorToRaDec(v Vector3) (float64, float64) {
|
||
|
dec := math.Asin(v[2]) * 180 / math.Pi
|
||
|
|
||
|
ra := math.Atan2(v[1], v[0]) * 180 / math.Pi
|
||
|
if ra < 0 {
|
||
|
ra += 360
|
||
|
}
|
||
|
|
||
|
return ra, dec
|
||
|
}
|
||
|
|
||
|
// 应用长期岁差转换
|
||
|
func Precess(ra, dec, jdFrom, jdTo float64) (float64, float64) {
|
||
|
// 将儒略日转换为儒略纪元
|
||
|
epjFrom := 2000.0 + (jdFrom-2451545.0)/365.25
|
||
|
epjTo := 2000.0 + (jdTo-2451545.0)/365.25
|
||
|
|
||
|
// 计算从起始历元到J2000.0的逆矩阵
|
||
|
rpFrom := ltpPMAT(epjFrom)
|
||
|
rpFromInv := Matrix3{
|
||
|
{rpFrom[0][0], rpFrom[1][0], rpFrom[2][0]},
|
||
|
{rpFrom[0][1], rpFrom[1][1], rpFrom[2][1]},
|
||
|
{rpFrom[0][2], rpFrom[1][2], rpFrom[2][2]},
|
||
|
}
|
||
|
|
||
|
// 计算从J2000.0到目标历元的矩阵
|
||
|
rpTo := ltpPMAT(epjTo)
|
||
|
|
||
|
// 计算复合旋转矩阵
|
||
|
var rpFinal Matrix3
|
||
|
for i := 0; i < 3; i++ {
|
||
|
for j := 0; j < 3; j++ {
|
||
|
for k := 0; k < 3; k++ {
|
||
|
rpFinal[i][j] += rpTo[i][k] * rpFromInv[k][j]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 将赤道坐标转换为直角坐标向量
|
||
|
vector := raDecToVector(ra, dec)
|
||
|
|
||
|
// 应用旋转矩阵
|
||
|
rotatedVector := Vector3{
|
||
|
rpFinal[0][0]*vector[0] + rpFinal[0][1]*vector[1] + rpFinal[0][2]*vector[2],
|
||
|
rpFinal[1][0]*vector[0] + rpFinal[1][1]*vector[1] + rpFinal[1][2]*vector[2],
|
||
|
rpFinal[2][0]*vector[0] + rpFinal[2][1]*vector[1] + rpFinal[2][2]*vector[2],
|
||
|
}
|
||
|
|
||
|
// 将直角坐标向量转换回赤道坐标
|
||
|
return vectorToRaDec(rotatedVector)
|
||
|
}
|